A case-crossover study on the effect of fine particulate matter on the risk of hospitalization in patients with diabetes mellitus in Shijiazhuang
-
摘要:
目的 探讨石家庄市大气细颗粒物(fine particulate matter, PM2.5)对糖尿病患者住院风险的影响。 方法 收集2019-2021年石家庄市大气污染物浓度、气象因素及糖尿病住院患者的相关资料。开展时间分层病例交叉研究,分别利用单污染物模型、双污染物模型及分层分析探究PM2.5对糖尿病患者住院风险的影响。 结果 共收集14 756例糖尿病患者住院资料。单污染物模型结果显示,PM2.5对糖尿病患者住院风险的影响在lag 01时达到最大,其日均浓度每升高1个IQR(38.750 μg/m3),糖尿病患者住院风险所对应的OR值为1.044 (95% CI: 1.019~1.070, P=0.001)。分层分析结果显示,PM2.5对男性糖尿病患者住院风险高于女性,PM2.5对年龄<60岁人群的糖尿病患者住院风险高于≥60岁人群,处于采暖期的糖尿病患者住院风险高于非采暖期,差异有统计学意义(P=0.035)。 结论 石家庄市PM2.5浓度升高可导致糖尿病患者入院风险增加。 Abstract:Objective This study aimed to investigate the effect of atmospheric fine particulate matter (PM2.5) on the risk of diabetes hospitalization in Shijiazhuang City. Methods We collected the relevant data of air pollutant concentration, meteorological factors and diabetes inpatients in Shijiazhuang from 2019 to 2021. A time-stratified case crossover study was conducted to explore the effect of atmospheric PM2.5 on hospitalization risk of diabetes patients using single pollutant model, double pollutant model and stratified analysis, respectively. Results A total of 14 756 hospitalized patients with diabetes mellitus were included in this study. The results of the single pollutant model showed that the association of each IQR increase in PM2.5 concentration on diabetes hospitalization reached the maximum at lag 01 [OR value (95% CI): 1.044(1.019-1.070), P=0.001]. Stratified analysis revealed that PM2.5 posed a higher hospitalization risk in male diabetic patients compared to females, in patients < 60 years compared to those 60 years and older, and in diabetic patients during the heating period compared to the non-heating period. And all the differences were statistically significant (P=0.035). Conclusions The increase of PM2.5 concentration can lead to an increased risk of diabetes hospitalization in Shijiazhuang City. -
Key words:
- Fine particulate matter /
- Diabetes /
- Case-crossover study /
- Risk of hospitalization
-
表 1 2019-2021年石家庄市糖尿病的患者基本情况
Table 1. Basic information on diabetes inpatients in Shijiazhuang from 2019 to 2021
指标 Index 人数 Number of people 占比/% Proportion/% 性别 Sex 男 Male 8 090 54.83 女 Female 6 666 45.17 年龄组/岁 Age group/years <60 5 766 39.08 ≥60 8 990 60.92 采暖季 Heating season 是 Yse 5 211 35.31 否 No 9 545 64.69 表 2 2019-2021年石家庄市每日大气污染物及气象条件描述
Table 2. Description of daily air pollutants and meteorological conditions in Shijiazhuang from 2019 to 2021
指标 Index 最小值 Min P25 M P75 最大值 Max IQR PM2.5/(μg·m-3) 9.000 27.000 41.000 65.750 355.000 38.750 PM10/(μg·m-3) 13.000 58.000 89.000 131.000 827.000 73.000 NO2/(μg·m-3) 7.000 24.000 35.000 50.000 122.000 26.000 SO2/(μg·m-3) 2.000 8.000 11.000 15.000 58.000 7.000 O3/(μg·m-3) 4.000 58.000 92.500 147.000 310.000 89.000 日均气压/hPa Barometric pressure /hPa 984.400 996.900 1 006.000 1 013.875 1 033.800 34.975 日均温度/℃ Temperature /℃ -9.400 6.125 15.500 24.700 33.200 18.575 相对湿度/% Relative humidity /% 7.000 41.000 58.000 73.000 100.000 32.000 表 3 2019-2021年石家庄市大气污染物之间的Spearman相关分析
Table 3. Spearman correlation analysis between air pollutants in Shijiazhuang from 2019 to 2021
指标 Index PM2.5/(μg·m-3) PM10/(μg·m-3) SO2/(μg·m-3) NO2/(μg·m-3) O3/(μg·m-3) PM2.5 /(μg·m-3) 1.000 PM10/(μg·m-3) 0.877 ① 1.000 SO2/(μg·m-3) 0.431 ① 0.583 ① 1.000 NO2/(μg·m-3) 0.573 ① 0.655 ① 0.666 ① 1.000 O3/(μg·m-3) -0.318 ① -0.290 ① -0.100 ① -0.448 ① 1.000 注:① P<0.05。
Note: ① P<0.05.表 4 单污染物模型中PM2.5浓度每增加1个IQR对不同滞后期的糖尿病患者住院风险的影响
Table 4. Effect of each IQR increase in PM2.5 concentration on the risk of diabetes hospitalization in different lag periods in the single-pollutant model
滞后日 Lag days OR值(95% CI) OR value(95% CI) P值 P value lag 0 1.041(1.017~1.066) 0.001 lag 1 1.029(1.008~1.051) 0.006 lag 2 1.001(0.981~1.026) 0.935 lag 3 1.006(0.987~1.026) 0.517 lag 01 1.044(1.019~1.070) 0.001 lag 02 1.030(1.004~1.057) 0.024 lag 03 1.022(0.996~1.050) 0.099 表 5 双污染物模型中PM2.5浓度每增加1个IQR对糖尿病患者住院风险的影响
Table 5. Effect of an IQR increase in PM2.5 concentration on the risk of diabetes hospitalization in a two-pollutant model
污染物 Pollutant OR值(95% CI) OR value(95% CI) P值 P value PM2.5 1.044(1.019~1.070) 0.001 O3 1.044(1.018~1.071) 0.001 表 6 大气PM2.5浓度每增加1个IQR对不同人群糖尿病住院风险的影响
Table 6. Effect of each IQR increase in PM2.5 concentration on the risk of diabetes hospitalization in different populations
指标 Index OR值(95% CI) OR value(95% CI) P值 P value 性别 Sex 男 Male 1.054(1.019~1.090) 0.002 女 Female 1.032(0.995~1.071) 0.092 年龄组/岁 Age group/years <60 1.068(1.025~1.113) 0.002 ≥60 1.031(0.999~1.064) 0.054 采暖季 Heating season 是 Yes 1.036(1.002~1.070) 0.035 否 No 0.997(0.922~1.077) 0.932 -
[1] Guan WJ, Zheng XY, Chung KF, et al. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action[J]. Lancet, 2016, 388(10054): 1939-1951. DOI: 10.1016/S0140-6736(16)31597-5. [2] 王敏珍, 郑山. 大气PM2.5暴露对人群2型糖尿病影响的研究进展[J]. 环境与职业医学, 2018, 35(2): 137-142. DOI: 10.13213/j.cnki.jeom.2018.17454.Wang MZ, Zheng S. Research advance on effects of fine particulate matters on type 2 diabetes mellitus[J]. Journal of Environmental and Occuptional Medicine, 2018, 35(2): 137-142. DOI: 10.13213/j.cnki.jeom.2018.17454. [3] 成国庆, 周保华, 段二红, 等. 石家庄市PM2.5污染现状及防控对策[J]. 中国环境管理干部学院学报, 2014, 24(5): 39-41, 58. DOI: 10.13358/j.issn.1008-813x.2014.05.12.Cheng GQ, Zhou BH, Duan EH, et al. Pollution situation and control measures of PM2.5 in Shijiazhuang City[J]. Journal of EMCC, 2014, 24(5): 39-41, 58. DOI: 10.13358/j.issn.1008-813x.2014.05.12. [4] MacLure M. The case-crossover design: a method for studying transient effects on the risk of acute events[J]. Am J Epidemiol, 1991, 133(2): 144-153. DOI: 10.1093/oxfordjournals.aje.a115853. [5] 叶瑜. 大气污染物与心脑血管疾病急性发作的病例交叉研究[D]. 杭州: 浙江大学, 2010.Ye Y. A case-crossover study on the relationship between air pollution and acute onset of cardio-cerebrovascular disease[D]. Hangzhou: Zhejiang University, 2010. [6] Janes H, Sheppard L, Lumley T. Case-crossover analyses of air pollution exposure data: referent selection strategies and their implications for bias[J]. Epidemiology, 2005, 16(6): 717-726. DOI: 10.1097/01.ede.0000181315.18836.9d. [7] 秦萌. 唐山市大气细颗粒物对2型糖尿病住院影响的病例交叉研究[D]. 唐山: 华北理工大学, 2019.Qin M. The effect of fine particulate matter on hospital admission for type 2 diabetic patients: acase-crossover study in Tangshan[D]. Tangshan: North China University of Science and Tech. nol. ogy, 2019. [8] 马洪群, 崔莲花. 青岛市大气细颗粒物对呼吸系统疾病患者住院影响的病例交叉研究[J]. 职业与健康, 2017, 33(7): 961-964. DOI: 10.13329/j.cnki.zyyjk.2017.0295.Ma HQ, Cui LH. Effect of ambient particulate matter on hospitalization of patients with respiratory diseases: a case crossover study in Qingdao City[J]. Occup and Health, 2017, 33(7): 961-964. DOI: 10.13329/j.cnki.zyyjk.2017.0295. [9] Zanobetti A, Dominici F, Wang Y, et al. A national case-crossover analysis of the short-term effect of PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders[J]. Environ Health, 2014, 13(1): 38. DOI: 10.1186/1476-069X-13-38. [10] 张经纬, 侯常春, 王淼, 等. 大气污染物与气温对2型糖尿病发病的交互作用研究[J]. 环境与健康杂志, 2020, 37(8): 678-683. DOI: 10.16241/j.cnki.1001-5914.2020.08.006.Zhang JW, Hou CC, Wang M, et al. Interaction between temperature and air pollutants on incidence of type 2 diabetes[J]. J Environ Health, 2020, 37(8): 678-683. DOI: 10.16241/j.cnki.1001-5914.2020.08.006. [11] 王鑫龙, 李星, 杨兴川, 等. 天津市PM2.5水溶性无机离子污染特征与来源分析[J]. 环境污染与防治, 2019, 41(10): 1223-1226. DOI: 10.15985/j.cnki.1001-3865.2019.10.018.Wang XL, Li Xing, Yang XC, et al. The pollution characteristics and source analysis of PM2.5 water-soluble inorganic ions in Tianjin[J]. Environmental Pollution Control, 2019, 41(10): 1223-1226. DOI: 10.15985/j.cnki.1001-3865.2019.10.018. [12] 朱彤, 尚静, 赵德峰. 大气复合污染及灰霾形成中非均相化学过程的作用[J]. 中国科学: 化学, 2010, 40(12): 1731-1740. DOI: 10.3321/j.issn:0254-6108.2006.03.005.Zhu T, Shang J, Zhao DF. The role of non-homogeneous chemical processes in the formation of atmospheric composite pollution and haze[J]. Sci Sin Chimica, 2010, 40(12): 1731-1740. DOI: 10.3321/j.issn:0254-6108.2006.03.005. [13] Hansen AB, Ravnskjær L, Loft S, et al. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort[J]. Environ Int, 2016, 91: 243-250. DOI: 10.1016/j.envint.2016.02.036. [14] Solimini AG, D'Addario M, Villari P. Ecological correlation between diabetes hospitalizations and fine particulate matter in Italian Provinces[J]. BMC Public Health, 2015, 15: 708. DOI: 10.1186/s12889-015-2018-5. [15] Li D, Wang JB, Yu ZB, et al. Air pollution exposures and blood pressure variation in type-2 diabetes mellitus patients: a retro spective cohort study in China[J]. Ecotoxicol Environ Saf, 2019, 171: 206-210. DOI: 10.1016/j.ecoenv.2018.12.069. [16] 寇新荣, 恽朝晖, 杨凯璇, 等. 沈阳市铁西区大气PM2.5对冠心病住院的影响[J]. 环境与健康杂志, 2019, 36(3): 227-231. DOI: 10.16241/j.cnki.1001-5914.2019.03.010.Kou XR, Yun CH, Yang KX, et al. Effects of atmospheric fine particulate matter on hospitalizations of coronary heart disease in Tiexi District of Shenyang[J]. J Environ Health, 2019, 36(3): 227-231. DOI: 10.16241/j.cnki.1001-5914.2019.03.010. [17] 赵岩, 冯利红, 姜长城, 等. 天津市市郊社区不同采暖期昼夜PM2.5成分及来源差异[J]. 中华疾病控制杂志, 2019, 23(9): 1121-1125, 1131. DOI: 10.16462/j.cnki.zhjbkz.2019.09.020.Zhao Y, Feng LH, Jiang CC, et al. Composition and source apportionment differences of daytime and nighttime samples of PM2.5 in the community of suburb in Tianjin during different heating periods[J]. Chin J Dis Control Prev, 2019, 23(9): 1121-1125, 1131. DOI: 10.16462/j.cnki.zhjbkz.2019.09.020. [18] 李宏宇, 潘璐, 杨玄, 等. 北京市某城区采暖期大气细颗粒物污染特征及来源分析[J]. 环境与健康杂志, 2017, 34(11): 947-951, 1034. DOI: 10.16241/j.cnki.1001-5914.2017.11.002.Li HY, Pan L, Yang X, et al. Characteristics and sources analysis of ambient PM2.5 in heating period in an urban area of Beijing[J]. J Environ Health, 2017, 34(11): 947-951, 1034. DOI: 10.16241/j.cnki.1001-5914.2017.11.002. [19] 张莹, 陈凤格, 何燕, 等. 华北某市PM2.5成分的季节变化特征[J]. 环境卫生学杂志, 2020, 10(3): 277-283. DOI: 10.13421/j.cnki.hjwsxzz.2020.03.009.Zhang Y, Chen FG, He Y, et al. Seasonal variation characteristics of PM2.5 components in a city of north China[J]. Journal of Environmental Hygiene, 2020, 10(3): 277-283. DOI: 10.13421/j.cnki.hjwsxzz.2020.03.009.