• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内蒙古地区35~75岁人群肥胖指标对高血压患病的预测效果

冯雪辉 方鑫 张谦 夏远 徐肖倩

冯雪辉, 方鑫, 张谦, 夏远, 徐肖倩. 内蒙古地区35~75岁人群肥胖指标对高血压患病的预测效果[J]. 中华疾病控制杂志, 2023, 27(7): 794-799. doi: 10.16462/j.cnki.zhjbkz.2023.07.009
引用本文: 冯雪辉, 方鑫, 张谦, 夏远, 徐肖倩. 内蒙古地区35~75岁人群肥胖指标对高血压患病的预测效果[J]. 中华疾病控制杂志, 2023, 27(7): 794-799. doi: 10.16462/j.cnki.zhjbkz.2023.07.009
FENG Xuehui, FANG Xin, ZHANG Qian, XIA Yuan, XU Xiaoqian. Predictive effect of obesity indexes on hypertension in people aged 35-75 years in Inner Mongolia[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(7): 794-799. doi: 10.16462/j.cnki.zhjbkz.2023.07.009
Citation: FENG Xuehui, FANG Xin, ZHANG Qian, XIA Yuan, XU Xiaoqian. Predictive effect of obesity indexes on hypertension in people aged 35-75 years in Inner Mongolia[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(7): 794-799. doi: 10.16462/j.cnki.zhjbkz.2023.07.009

内蒙古地区35~75岁人群肥胖指标对高血压患病的预测效果

doi: 10.16462/j.cnki.zhjbkz.2023.07.009
基金项目: 

内蒙古自治区自治区高校科研 NJZY22620

内蒙古医科大学面上 YKD2022MS062

详细信息
    通讯作者:

    徐肖倩,E-mail: xxq20100@163.com

  • 中图分类号: R181.3

Predictive effect of obesity indexes on hypertension in people aged 35-75 years in Inner Mongolia

Funds: 

Inner Mongolia Autonomous Region University Research NJZY22620

General Project of Inner Mongolia Medical University YKD2022MS062

More Information
  • 摘要:   目的  比较9个肥胖指标单独和联合使用对高血压患病风险的预测效果。  方法  基于内蒙古地区“心血管病高危人群早期筛查与综合干预”项目初筛数据,通过logistic回归分析模型分析肥胖指标对高血压患病的影响,并采用受试者工作特征曲线(receiver operator characteristic, ROC)分析预测高血压患病风险的效果。  结果  本研究共纳入48 570名35~75岁人群。调整混杂因素后,男性人群中体格指数(ponderal index,PI)每增加1个s对高血压患病增加的风险最高(OR=1.529, 95% CI: 1.476~1.584),而女性(OR=1.432, 95% CI: 1.395~1.470)和全人群(OR=1.473, 95% CI: 1.443~1.503)均受体质指数(body mass index,BMI)影响最大。BMI预测高血压患病风险的曲线下面积(area under the curve,AUC)最大为0.665,而BMI和脂质蓄积指数(lipid accumulation product index, LAP)联合预测的AUC为0.668,仅增加0.45%。BMI预测高血压的切点值为25.7 kg/m2  结论  BMI预测高血压患病风险的效果最好,应采取措施将BMI控制在25.7 kg/m2以下。
  • 图  1  周围型肥胖指标与中心型肥胖指标联合预测高血压患病的ROC曲线结果分析

    1. BMI: 体质指数;2. WC: 腰围;3. WHtR: 腰高比;4. PI: 体格指数;5. CI: 锥度指数;6. ABSI:身体形态指数;7. BRI: 身体圆度指数;8. LAP: 脂质蓄积指数;9. VAI: 内脏脂肪指数;10. AUC: 曲线下面积。

    Figure  1.  The ROC Curve result analysis of overall obesity index and central obesity index in predicting hypertension

    1. BMI: body mass index; 2. WC: waist circumference; 3. WHtR: waist height ratio; 4. PI: ponderal index; 5. CI: conicity index; 6. ABSI: a body shape index; 7. BRI: body roundness index; 8. LAP: lipid accumulation product index; 9. VAI: visceral adiposity index; 10. AUC: area under the curvex.

    表  1  不同特征组间高血压患病情况比较

    Table  1.   Comparison of hypertension prevalence among groups with different characteristics

    分组 Grouping 男性 Male 女性 Female 合计 Total
    人数(占比/%) Number of people (proportion/%) PP value 人数(占比/%) Number of people (proportion/%) PP value 人数(占比/%) Number of people (proportion/%) PP value
    合计 Total 8 291(40.4) 9 784(34.9) 18 075(37.2)
    年龄组/岁 Age group/years < 0.001 < 0.001 < 0.001
      35~ < 45 1 257(31.1) 1 193(19.2) 2 450(23.9)
      45~ < 55 2 592(38.3) 3 532(32.6) 6 124(34.8)
      55~ < 65 2 957(44.5) 3 508(42.8) 6 465(43.6)
      65~75 1 485(48.0) 1 551(55.7) 3 036(51.7)
    民族 Nationality < 0.001 < 0.001 0.709
      汉族 Han 7 332(39.9) 8 720(35.2) 16 042(37.2)
      蒙族 Mongol 827(44.6) 908(33.3) 1 735(37.9)
      其他 Other minority ethnic 134(44.2) 148(31.4) 282(36.4)
    地区 Area 0.794 0.008 0.010
      城市 Rural 2 395(40.2) 3 057(33.8) 5 452(36.4)
      农村 Urban 5 896(40.4) 6 727(35.4) 12 623(37.6)
    在婚 Married < 0.001 < 0.001 < 0.001
      是 Yes 7 592(39.6) 8 636(34.2) 16 228(36.5)
      否 No 699(50.8) 1 148(41.3) 1 847(44.5)
    农民 Farmer 0.109 < 0.001 < 0.001
      是 Yes 3 836(39.8) 4 984(37.8) 8 820(38.6)
      否 No 4 455(40.9) 4 800(32.4) 9 255(36.0)
    教育水平 Educational level < 0.001 < 0.001 < 0.001
      高中以下 Below high school 6 222(79.8) 6 444(61.4) 12 666(69.8)
      高中及以上 High school and above 1 450(43.3) 1 867(36.7) 3 317(39.3)
    家庭年收入/元 Annual household income/yuan 0.258 0.002 < 0.001
       < 50 000 7 325(40.2) 8 867(35.5) 16 111(37.5)
      ≥50 000 1 056(41.4) 908(30.1) 1 964(35.3)
    具有医疗保险 Health insurance < 0.001 < 0.001 < 0.001
      是 Yes 7 093(39.5) 8 324(34.6) 15 417(36.7)
      否 No 1 198(46.2) 1 460(36.5) 2 658(40.3)
    吸烟 Smoking < 0.001 < 0.001 < 0.001
      是 Yes 3 823(36.8) 661(31.0) 4 484(35.8)
      否 No 4 468(43.9) 9 123(35.3) 13 591(37.7)
    饮酒 Drinking < 0.001 < 0.001 < 0.001
      是 Yes 4 757(43.5) 900(33.2) 5 657(41.4)
      否 No 3 451(36.6) 8 795(35.1) 12 246(35.5)
    糖尿病 Diabetes mellitus < 0.001 < 0.001 < 0.001
      是 Yes 1 824(50.3) 1 913(46.6) 3 737(48.3)
      否 No 6 467(38.2) 7 871(32.9) 14 338(35.1)
    血脂异常 Dyslipidemia < 0.001 < 0.001 < 0.001
      是 Yes 3 276(43.8) 2 857(41.6) 6 133(42.7)
      否 No 5 006(38.4) 6 923(32.8) 11 929(34.9)
    下载: 导出CSV

    表  2  控制混杂因素后肥胖指标对高血压患病影响的logistic回归分析模型

    Table  2.   Adjusted binary logistic regression model analysis of the impact of obesity indicators on hypertension

    肥胖指标 Obesity indicators Q1 OR值(95% CI) Q1 OR value (95% CI) Q2 OR值(95% CI) Q2 OR value (95% CI) Q3 OR值(95% CI) Q3 OR value (95% CI) Q4 OR值(95% CI) Q4 OR value (95% CI) Q5 OR值(95% CI) Q5 OR value (95% CI) s OR值(95% CI) s OR value (95% CI)
    男性 Male
      WC 1.000 0.875(0.750~1.021) 0.860(0.699~1.058) 0.823(0.642~1.055) 0.866(0.651~1.152) 1.356(1.313~1.400)
      WHtR 1.000 0.940(0.677~1.305) 0.836(0.573~1.220) 0.909(0.597~1.385) 0.903(0.575~1.418) 1.384(1.339~1.430)
      BMI 1.000 1.202(1.047~1.381) 1.321(1.092~1.597) 1.486(1.176~1.877) 1.744(1.319~2.306) 1.519(1.469~1.570)
      PI 1.000 1.245(1.088~1.425) 1.313(1.095~1.576) 1.448(1.157~1.813) 1.645(1.253~2.159) 1.529(1.476~1.584)
      CI 1.000 1.298(1.095~1.538) 1.191(0.945~1.502) 1.279(0.962~1.701) 1.224(0.873~1.717) 1.102(1.069~1.137)
      ABSI 1.000 0.955(0.820~1.111) 0.933(0.769~1.133) 0.947(0.755~1.188) 0.901(0.686~1.182) 0.986(0.956~1.060)
      BRI 1.000 1.091(1.791~1.504) 1.178(0.817~1.699) 0.989(1.656~1.491) 0.907(0.585~1.405) 1.376(1.332~1.422)
      LAP 1.000 1.274(1.123~1.444) 1.424(1.213~1.670) 1.916(1.582~2.320) 2.592(2.058~3.264) 1.400(1.352~1.349)
      VAI 1.000 0.898(0.814~0.990) 0.753(0.667~0.849) 0.695(0.596~0.810) 0.626(0.514~0.764) 1.174(1.129~1.220)
    女性 Female
      WC 1.000 0.928(0.825~1.054) 1.000(0.853~1.174) 1.035(0.847~1.264) 1.040(0.817~1.325) 1.363(1.325~1.402)
      WHtR 1.000 0.918(0.643~1.309) 1.007(0.682~1.486) 1.168(0.765~1.783) 1.339(0.856~2.095) 1.374(1.338~1.411)
      BMI 1.000 0.974(0.852~1.113) 0.929(0.779~1.108) 0.901(0.729~1.114) 0.964(0.750~1.240) 1.432(1.395~1.470)
      PI 1.000 1.146(1.002~1.311) 1.304(1.095~1.553) 1.524(1.236~1.878) 1.755(1.371~2.248) 1.422(1.386~1.460)
      CI 1.000 0.951(0.839~1.079) 0.892(0.745~1.068) 0.878(0.698~1.105) 0.785(0.588~1.047) 1.134(1.104~1.165)
      ABSI 1.000 1.046(0.935~1.171) 1.031(0.886~1.201) 1.046(0.871~1.256) 0.934(0.741~1.176) 1.013(0.897~1.041)
      BRI 1.000 1.272(0.891~1.814) 1.350(0.918~1.984) 1.199(0.787~1.827) 1.221(0.750~1.910) 1.358(1.323~1.394)
      LAP 1.000 1.147(1.018~1.291) 1.333(1.151~1.544) 1.513(1.272~1.801) 1.774(1.441~2.184) 1.348(1.305~1.392)
      VAI 1.000 0.995(0.901~1.099) 0.933(0.835~1.043) 0.818(0.720~0.929) 0.826(0.707~0.966) 1.134(1.099~1.170)
    合计 Total
      WC 1.000 0.960(0.879~1.049) 1.057(0.943~1.185) 1.099(0.954~1.266) 1.201(1.015~1.423) 1.371(1.343~1.399)
      WHtR 1.000 0.961(0.757~1.219) 0.954(0.730~1.245) 1.070(0.798~1.434) 1.106(0.810~1.510) 1.384(1.357~1.413)
      BMI 1.000 1.096 0.998~1.212) 1.160(1.027~1.311) 1.247(1.075~1.448) 1.451(1.212~1.736) 1.473(1.443~1.503)
      PI 1.000 1.189(1.086~1.303) 1.258(1.118~1.416) 1.369(1.185~1.581) 1.479(1.241~1.763) 1.433(1.404~1.462)
      CI 1.000 1.089(0.985~1.203) 1.024(0.890~1.179) 1.052(0.882~1.255) 0.970(0.781~1.205) 1.139(1.116~1.161)
      ABSI 1.000 1.033(0.970~1.150) 1.013(0.930~1.170) 1.025(0.920~1.220) 0.935(0.810~1.140) 1.018(0.998~1.038)
      BRI 1.000 1.109(1.876~1.403) 1.144(0.883~1.482) 0.972(1.730~1.295) 0.926(0.683~1.254) 1.371(1.344~1.399)
      LAP 1.000 1.146(1.056~1.245) 1.293(1.166~1.434) 1.562(1.381~1.767) 1.928(1.663~2.236) 1.377(1.345~1.409)
      VAI 1.000 0.941(0.878~1.080) 0.857(0.786~0.922) 0.764(0.695~0.840) 0.727(0.645~0.820) 1.144(1.114~1.171)
    注:BMI, 体质指数; WC, 腰围; WHtR, 腰高比; PI, 体格指数; CI, 锥度指数; ABSI:身体形态指数; BRI, 身体圆度指数; LAP, 脂质蓄积指数; VAI, 内脏脂肪指数; Q, 五分位数。① P < 0.001。② P < 0.05。
    Note: BMI, body mass index; WC, waist circumference; WHtR, waist height ratio; PI, ponderal index; CI, conicity index; ABSI, a body shape index; BRI, body roundness index; LAP, lipid accumulation product index; VAI, visceral adiposity index; Q, quintile.① P < 0.001. ② P < 0.05.
    下载: 导出CSV

    表  3  各项肥胖指标预测高血压患病的ROC曲线分析

    Table  3.   ROC curve analysis of obesity indicators in predicting hypertension

    肥胖指标 Obesity indicators AUC (95% CI) 切点值 Cutoff value 灵敏度 Sensitivity 特异度 Specificity 约登指数 Youden index PP value
    男性 Male
      WC 0.632 (0.624~0.639) 86.500 0.599 0.528 0.127 < 0.001
      WHtR 0.633 (0.625~0.641) 0.500 0.680 0.460 0.140 < 0.001
      BMI 0.647 (0.640~0.655) 25.830 0.509 0.641 0.150 < 0.001
      PI 0.642 (0.634~0.649) 14.660 0.654 0.500 0.155 < 0.001
      CI 0.608 (0.600~0.615) 1.210 0.621 0.456 0.078 < 0.001
      ABSI 0.603 (0.595~0.610) 0.075 0.785 0.255 0.041 < 0.001
      BRI 0.632 (0.624~0.640) 3.472 0.670 0.471 0.140 < 0.001
      LAP 0.632 (0.624~0.640) 31.900 0.450 0.635 0.132 < 0.001
      VAI 0.608 (0.601~0.616) 1.630 0.407 0.666 0.073 < 0.001
    女性 Female
      WC 0.668 (0.661~0.674) 82.700 0.578 0.587 0.166 < 0.001
      WHtR 0.671 (0.664~0.677) 0.510 0.662 0.525 0.177 < 0.001
      BMI 0.676 (0.669~0.682) 25.630 0.534 0.621 0.155 < 0.001
      PI 0.675 (0.669~0.682) 16.100 0.580 0.586 0.167 < 0.001
      CI 0.652 (0.646~0.659) 1.200 0.575 0.554 0.129 < 0.001
      ABSI 0.648 (0.642~0.655) 0.075 0.652 0.432 0.085 < 0.001
      BRI 0.670 (0.664~0.677) 3.662 0.655 0.533 0.188 < 0.001
      LAP 0.665 (0.658~0.671) 30.660 0.600 0.571 0.170 < 0.001
      VAI 0.652 (0.645~0.658) 1.230 0.682 0.416 0.098 < 0.001
    合计 Total
      WC 0.655 (0.650~0.660) 82.700 0.649 0.507 0.156 < 0.001
      WHtR 0.656 (0.651~0.661) 0.510 0.633 0.530 0.163 < 0.001
      BMI 0.665 (0.660~0.670) 25.700 0.521 0.629 0.151 < 0.001
      PI 0.660 (0.655~0.665) 15.360 0.613 0.530 0.143 < 0.001
      CI 0.636 (0.631~0.641) 1.200 0.623 0.489 0.113 < 0.001
      ABSI 0.631 (0.626~0.636) 0.075 0.704 0.369 0.073 < 0.001
      BRI 0.655 (0.650~0.660) 3.609 0.644 0.521 0.165 < 0.001
      LAP 0.651 (0.647~0.656) 30.150 0.569 0.581 0.150 < 0.001
      VAI 0.634 (0.629~0.639) 1.610 0.470 0.611 0.081 < 0.001
    注:BMI, 体质指数; WC, 腰围; WHtR, 腰高比; PI, 体格指数; CI, 锥度指数; ABSI:身体形态指数; BRI, 身体圆度指数; LAP, 脂质蓄积指数; VAI, 内脏脂肪指数; AUC, 曲线下面积。
    Note: BMI, body mass index; WC, waist circumference; WHtR, waist height ratio; PI, ponderal index; CI, conicity index; ABSI, a body shape index; BRI, body roundness index; LAP, lipid accumulation product index; VAI, visceral adiposity index; AUC, area under the curve.
    下载: 导出CSV
  • [1] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25):2982-3021. DOI: 10.1016/j.jacc.2020.11.010.
    [2] Lu JP, Lu Y, Wang XC, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project)[J]. Lancet, 2017, 390(10112):2549-2558. DOI: 10.1016/S0140-6736(17)32478-9.
    [3] Xu XQ, Bao H, Tian ZX, et al. Prevalence, awareness, treatment, and control of hypertension in Northern China: a cross-sectional study[J]. BMC Cardiovasc Disord, 2021, 21(1): 525. DOI: 10.1186/s12872-021-02333-7.
    [4] 付莹, 袁倩, 陈旭嘉, 等. 深圳市自然人群不同肥胖指标与高血压关系的研究[J]. 中国预防医学杂志, 2021, 22(10):746-751. DOI: 10.16506/j.1009-6639.2021.10.004.

    Fu Y, Yuan Q, Chen XJ, et al. The association between different obesity indices and hypertension among local residents in Shenzhen[J]. Chi J Prev Med, 2021, 22(10):746-751. DOI: 10.16506/j.1009-6639.2021.10.004.
    [5] Dzudie A, Njedock N, Boombhi J, et al. Association between measures of adiposity and blood pressure levels in adult Cameroonians[J]. Health Sci Rep, 2021, 4(2):e259. DOI: 10.1002/hsr2.259.
    [6] 汪宏莉, 韩延柏, 陈涛, 等. 老年人高血压风险预测肥胖指标筛选[J]. 中国公共卫生, 2020, 36(1):105-109. DOI: 10.11847/zgggws1125126.

    Wang HL, Han YB, Chen T, et al. Screening on obesity indexes for predicting hypertension risk in 60-69 years old community residents[J]. Chin J Publ Heal, 2020, 36(1):105-109. DOI: 10.11847/zgggws1125126.
    [7] Xie X, Li Q, Zhang LM, et al. Lipid accumulation product, visceral adiposity index, and Chinese visceral adiposity index as markers of cardiometabolic risk in adult growth hormone deficiency patients: a cross-sectional study[J]. Endocr Pract, 2018, 24(1):33-39. DOI: 10.4158/EP-2017-0007.
    [8] Tuan NT, Adair LS, Stevens J, et al. Prediction of hypertension by different anthropometric indices in adults: the change in estimate approach[J]. Public Health Nutr, 2010, 13(5):639-646. DOI: 10.1017/S1368980009991479.
    [9] Gou J, Wu HY. Secular trends of population attributable risk of overweight and obesity for hypertension among Chinese adults from 1991 to 2011[J]. Sci Rep, 2021, 11(1):6371. DOI: 10.1038/s41598-021-85794-2.
    [10] 杨静, 王飞, 韩煦, 等. 人体测量学指标与老年人群高血压发病风险的前瞻性队列研究[J]. 中华预防医学杂志, 2019, 53(3):272-278. DOI: 10.3760/cma.j.issn.0253-9624.2019.03.011.

    Yang J, Wang F, Han X, et al. Different anthropometric indices and incident risk of hypertension in elderly population: a prospective cohort study[J]. Chin J Prev Med, 2019, 53(3):272-278. DOI: 10.3760/cma.j.issn.0253-9624.2019.03.011.
    [11] Zhou ZQ, Hu DY, Chen J. Association between obesity indices and blood pressure or hypertension: which index is the best?[J]. Public Health Nutr, 2009, 12(8):1061-1071. DOI: 10.1017/s1368980008003601.
    [12] Chen YZ, Zhang ZL, Wang JH, et al. Sex differences in the association of abdominal adipose tissue and anthropometric data with untreated hypertension in a Chinese population[J]. Biol Sex Differ, 2020, 11(1):38. DOI: 10.1186/s13293-020-00317-4.
    [13] Dzudie A, Njedock N, Boombhi J, et al. Association between measures of adiposity and blood pressure levels in adult Cameroonians[J]. Health Sci Rep, 2021, 4(2):e259. DOI: 10.1002/hsr2.259.
    [14] 史青云, 陈炳华, 罗婉榕, 等. 成年人不同肥胖评价指标对高血压患病风险预测效果的比较[J]. 西安交通大学学报(医学版), 2022, 43(4): 581-587. DOI: 10.7652/jdyxb202204017.

    Shi QY, Chen BH, Luo WR, et al. Comparison of different obesity indices in predicting risk of hypertension among adults in Gansu Province[J]. Journal of Xi'an Jiaotong University (Medcical Sciences), 2022, 43(4):581-587. DOI: 10.7652/jdyxb202204017.
    [15] Zhang P, Wang R, Gao CS, et al. Types of obesity and its association with the clustering of cardiovascular disease risk factors in Jilin Province of China[J]. Int J Environ Res Public Health, 2016, 13(7):685. DOI: 10.3390/ijerph13070685.
    [16] 中国肥胖问题工作组数据汇总分析协作组. 我国成人体重指数和腰围对相关疾病危险因素异常的预测价值:适宜体重指数和腰围切点的研究[J]. 中华流行病学杂志, 2002(1):10-15. DOI: 10.3760/j.issn:0254-6450.2002.01.003.

    China Obesity Working Group Data Aggregation and Analysis Collaborative Group. Predictive value of adult body mass index and waist circumference on abnormal risk factors of related diseases in my country: a study of appropriate body mass index and waist circumference cut-off points[J]. Chin J Epidemiol, 2002(1):10-15. DOI: 10.3760/j.issn:0254-6450.2002.01.003.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  117
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-06
  • 修回日期:  2023-01-16
  • 网络出版日期:  2023-08-08
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回