Relationship between hypertriglyceridemic-waist phenotype and clustering of cardiovascular risk factors among residents aged 40 and above in Dehui City, Jilin Province
-
摘要:
目的 探讨吉林省德惠市≥40岁人群高三酰甘油血症-腰围表型(hypertriglyceridemic-waist phenotype, HTWP)与心血管危险因素(cardiovascular risk factors, CRFs)聚集的关系。 方法 采用多阶段分层随机整群抽样方法于2016年1―3月对吉林省德惠市≥40岁人群进行横断面调查。将HTWP定义为空腹血清三酰甘油(triglyceride, TG)≥1.7 mmol/L,男性腰围(waist circumference, WC)≥90 cm或女性WC≥80 cm。采用logistic回归分析模型评估该人群HTWP与CRFs聚集的相关性。 结果 吉林省德惠市40岁及以上人群HTWP检出率为33.98%。HTWP组和正常腰围-正常三酰甘油(normal waist-normal triglycerides, NWNT)组CRFs聚集检出率分别为71.68%和20.90%。多因素logistic回归分析模型分析结果显示HTWP组CRFs聚集检出风险为NWNT组的12.01倍(OR=12.01, 95% CI: 9.83~14.67, P < 0.001)。 结论 HTWP与CRFs聚集密切相关,可用于≥40岁人群CRFs聚集的筛查。 Abstract:Objective This study aimed to explore the relationship between hypertriglyceridemic-waist phenotype (HTWP) and clustering of cardiovascular risk factors (CRFs) among residents aged 40 and above in Dehui City, Jilin Province. Methods A cross-sectional survey was conducted among residents aged 40 and above in Dehui City, Jilin Province, from January to March 2016, using a multistage stratified, random cluster sampling method. The HTWP was defined by serum triglyceride (TG) levels of ≥1.7 mmol/L and waist circumference (WC) of ≥90 cm in males or ≥80 cm in females. The logistic regression model was conducted to assess the relationship between the HTWP and the clustering of CRFs. Results The prevalence of HTWP was 33.98% among residents aged 40 and above in Dehui City, Jilin Province. The detection rates of CRFs clustering in the HTWP group and normal waist-normal triglycerides (NWNT) group were 71.68% and 20.90%, respectively. The multivariate logistic regression analysis indicated that the risk of detecting CRFs clustering in the HTWP group was 12.01 times greater than that in the NWNT group (OR=12.01, 95% CI: 9.83-14.67, P < 0.001). Conclusions The HTWP is strongly correlated with the clustering of CRFs, making it a convenient tool for screening CRFs clustering in residents aged 40 and above. -
表 1 四组的基线特征
Table 1. Baseline characteristics of four groups
组别Group NWNT(n=1 115)[人数(占比/%)]
NWNT (n=1 115)[Number of people(proportion/%)]NWET(n=462)[人数(占比/%)]
NWET (n=462)[Number of people(proportion/%)]EWNT(n=1 098)[人数(占比/%)]
EWNT (n=1 098)[Number of people(proportion/%)]HTWP(n=1 377)[人数(占比/%)]
HTWP (n=1 377)[Number of people(proportion/%)]H/χ2值value P值value 年龄/岁, M(IQR) Age/years, M(IQR) 52(14.00) 50(12.00) 55(15.00) ① 56(14.00) ① 107.64 < 0.001 性别Sex 182.28 < 0.001 男Male 567(50.85) 265(57.36) 345(31.42) ① 442(32.10) ① ― 女Female 548(49.15) 197(42.64) 753(68.58) ① 935(67.90) ① ― 居住地Residence 29.53 < 0.001 城市Urban 576(51.66) 273(59.09) ① 494(44.99) ① 724(52.58) ― 农村Rural 539(48.34) 189(40.91) ① 604(55.01) ① 653(47.42) ― 受教育程度Education 31.94 < 0.001 高中及以下High school and below 825(73.99) 327(70.78) 886(80.69) ① 1 104(80.17) ① ― 高中以上Above high school 290(26.01) 135(29.22) 212(19.31) ① 273(19.83) ① ― 体力活动Physical activities 909(81.52) 344(74.46) ① 875(79.69) 1 022(74.22) ① 29.31 < 0.001 高血压Hypertension 428(38.39) 234(50.65) ① 624(56.83) ① 921(66.88) ① 207.07 < 0.001 糖尿病Diabetes 31(2.78) 27(5.84) ① 71(6.47) ① 201(14.60) ① 126.93 < 0.001 吸烟Smoking 308(27.62) 150(32.47) 415(37.80) ① 500(36.31) ① 31.04 < 0.001 饮酒Drinking 331(29.69 176(38.10) ① 247(22.50) ① 320(23.24) ① 54.25 < 0.001 SBP/mmHg, M(IQR) 130.50(25.00) 134.00(26.60) ① 138.75(28.10) ① 145.00(28.50) ① 274.35 < 0.001 DBP/mmHg, M(IQR) 84.00(14.00) 87.00(16.00) ① 88.00(14.50) ① 90.50(16.00) ① 195.17 < 0.001 BMI/(kg·m-2), M(IQR) 21.83(3.14) 22.89(3.43) ① 25.20(3.91) ① 26.23(3.90) ① 1 446.68 < 0.001 WC/cm, M(IQR) 77(9.00) 79(10.00) ① 90(10.00) ① 90(10.00) ① 2 008.39 < 0.001 FPG/(mmol·L-1), M(IQR) 4.80(0.90) 4.90(1.00) 4.90(1.03) ① 5.10(1.40) ① 119.15 < 0.001 TG/(mmol·L-1), M(IQR) 1.10(0.47) 2.32(1.18) ① 1.25(0.48) ① 2.56(1.45) ① 2 965.31 < 0.001 TC/(mmol·L-1), M(IQR) 4.99(1.29) 5.52(1.43) ① 5.23(1.32) ① 5.63(1.40) ① 270.07 < 0.001 HDL-C/(mmol·L-1), M(IQR) 1.27(0.26) 1.20(0.22) ① 1.26(0.25) 1.20(0.24) ① 190.30 < 0.001 LDL-C/(mmol·L-1), M(IQR) 1.79(1.31) 1.87(1.14) 1.88(1.10) 1.96(1.07) ① 22.01 < 0.001 注:1. HTWP:正常腰围-正常三酰甘油;NWET:单纯高三酰甘油;EWNT:单纯腹型肥胖;HTWP:高三酰甘油血症-腰围表型;SBP, 收缩压;DBP:舒张压;BMI:体质指数;FPG:空腹血糖;TG:三酰甘油;TC:总胆固醇;HDL-C:高密度脂蛋白胆固醇。LDL-C:低密度脂蛋白胆固醇;
2. “―”表示模型未提供数据。
① P<0.05。
Note: 1. NWNT: normal waist-normal triglycerides; NWET: normal waist-elevated triglycerides; EWNT: elevated waist-normal triglycerides; HTWP: hypertriglyceridemic-waist phenotype; SBP, systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index; FPG: fasting plasma glucose; TG: triglyceride; TC: total cholesterol; HDL-C: high density liptein cholesterol; LDL-C: low density lipoprotein cholesterol.
2. "―" indicates that the model did not provide data.
① P<0.05.表 2 四组CRFs聚集的比较
Table 2. Comparison of clustering of CFRs among four groups
组别Group CRFs聚集[人数(占比/%)]
CRFs gathering [Number of people(proportion/%)]模型1 Model 1 模型2 Model 2 OR值(95% CI)
OR value (95% CI)P值
valueOR值(95% CI)
OR value (95% CI)P值
valueNWNT (n=1 115) 233(20.90) 1.00 1.00 NWET (n=462) 171(37.01) 2.22(1.75~2.82) <0.001 2.17(1.70~2.77) <0.001 EWNT (n=1 098) 632(57.56) 5.13(4.26~6.19) <0.001 6.43(5.26~7.86) <0.001 HTWP (n=1 377) 987(71.68) 9.58(7.95~11.54) <0.001 12.01(9.83~14.67) <0.001 注:1. HTWP:正常腰围-正常三酰甘油;NWET:单纯高三酰甘油;EWNT:单纯腹型肥胖;HTWP:高三酰甘油血症-腰围表型。
2. 模型1为单因素logistic回归分析模型;模型2为多因素logistic回归分析模型,校正了年龄、性别、居住地、教育程度、体力活动及饮酒。
Note: 1. NWNT: normal waist-normal triglycerides; NWET: normal waist-elevated triglycerides; EWNT: elevated waist-normal triglycerides; HTWP: hypertriglyceridemic-waist phenotype.
2. Model 1 was a single factor logistic regression analysis model; Model 2 was a multivariate logistic regression analysis model that adjusted for age, sex, place of residence, education, physical activity, and alcohol consumption. -
[1] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. DOI: 10.1016/j.jacc.2020.11.010. [2] Zhang L, Qin LQ, Cui HY, et al. Prevalence of cardiovascular risk factors clustering among suburban residents in Beijing, China[J]. Int J Cardiol, 2011, 151(1): 46-49. DOI: 10.1016/j.ijcard.2010.04.056. [3] Yu J, Ma Y, Yang S, et al. Risk factors for cardiovascular disease and their clustering among adults in Jilin (China)[J]. Int J Environ Res Public Health, 2015, 13(1): ijerph13010070. DOI: 10.3390/ijerph13010070. [4] Hong X, Ye Q, He J, et al. Prevalence and clustering of cardiovascular risk factors: a cross-sectional survey among Nanjing adults in China[J]. BMJ open, 2018, 8(6): e020530. DOI: 10.1136/bmjopen-2017-020530. [5] Grundy SM, Pasternak R, Greenland P, et al. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American heart association and the american College of Cardiology[J]. Circulation, 1999, 100(13): 1481-1492. DOI: 10.1161/01.cir.100.13.1481. [6] Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men?[J]. Circulation, 2000, 102(2): 179-184. DOI: 10.1161/01.cir.102.2.179. [7] Lemieux I, Poirier P, Bergeron J, et al. Hypertriglyceridemic waist: a useful screening phenotype in preventive cardiology?[J]. Can J Cardiol, 2007, 23 Suppl B: 23B-31B. DOI: 10.1016/s0828-282x(07)71007-3. [8] 马春明, 刘晓丽, 高国芹, 等. 青少年高甘油三酯血症-腰围表型与心血管危险因素聚集相关[J]. 中华内分泌代谢杂志, 2015, 31(2): 95-98. DOI: 10.3760/cma.j.issn.1000-6699.2015.02.001.Ma CM, Liu XL, Gao GQ, et al. Relationship between hypertriglyceridemic-waist phenotype and clustering of cardiovascular risk factors in adolescents[J]. Chin J Endocrinol Metab, 2015, 31(2): 95-8. DOI: 10.3760/cma.j.issn.1000-6699.2015.02.001. [9] 袁宁, 黄晓波, 刘雅, 等. 中老年人群高甘油三酯血症-腰围表型与心血管危险因素聚集关系探讨[J]. 中国循环杂志, 2016, 31(11): 1079-1083. DOI: 10.3969/j.issn.1000-3614.2016.11.009.Yuan N, Huang XB, Liu Y, et al. Relationship between hypertriglyceridemic-waist phenotype and clustering of cardiovascular risk factors in middle and aged population[J]. Chin Circul J, 2016, 31(11): 1079-1083. DOI: 10.3969/j.issn.1000-3614.2016.11.009. [10] Li X, Wu C, Lu J, et al. Cardiovascular risk factors in China: a nationwide population-based cohort study[J]. Lancet Public Health, 2020, 5(12): e672-e681. DOI: 10.1016/S2468-2667(20)30191-2. [11] 何权瀛, 高莹慧. 关于吸烟问题若干名词定义[J]. 中华结核和呼吸杂志, 2009, 32(1): 26. DOI: 10.3760/cma.j.issn.1001-0939.2009.01.008.He QY, Gao YH. Definition of some nouns about smoke[J]. Chin J Tuberc Respir Dis, 2009, 32(1): 26. DOI: 10.3760/cma.j.issn.1001-0939.2009.01.008. [12] Willenbring ML, Massey SH, Gardner MB. Helping patients who drink too much: an evidence-based guide for primary care clinicians[J]. Am Fam Physician, 2009, 80(1): 44-50. [13] 中国肥胖问题工作组. 中国成人超重和肥胖症预防与控制指南(节录)[J]. 营养学报, 2004, 26(1): 1-4. DOI: 10.13325/j.cnki.acta.nutr.sin.2004.01.001Working Group on Obesity in China. Guidelines for prevention and control of overweight and obesity in Chinese adults[J]. Acta Nutr sin, 2004, 26(1): 1-4. DOI: 10.13325/j.cnki.acta.nutr.sin.2004.01.001 [14] Joint Committee for Guideline Revision. 2018 Chinese guidelines for prevention and treatment of hypertension-a report of the revision committee of Chinese guidelines for prevention and treatment of hypertension[J]. J Geriatr Cardiol, 2019, 16(3): 182-241. DOI: 10.11909/j.issn.1671-5411.2019.03.014. [15] Jia W, Weng J, Zhu D, et al. Standards of medical care for type 2 diabetes in China 2019[J]. Diabetes Metab Res Rev, 2019, 35(6): e3158. DOI: 10.1002/dmrr.3158. [16] Joint Committee for Developing Chinese Guidelines On Prevention and Treatment of Dyslipidemia in Adults. [Chinese guidelines on prevention and treatment of dyslipidemia in adults][J]. Chin J Cardiol, 2007, 35(5): 390-419. DOI: 10.3760/j.issn:0253-3758.2007.05.003. [17] Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study[J]. Circulation, 2007, 116(1): 39-48. DOI: 10.1161/CIRCULATIONAHA.106.675355. [18] Brown JC, Harhay MO, Harhay MN. Anthropometrically-predicted visceral adipose tissue and mortality among men and women in the third national health and nutrition examination survey (NHANES Ⅲ)[J]. Am J Hum Biol, 2017, 29(1). DOI: 10.1002/ajhb.22898. [19] Neeland IJ, Ross R, Després JP, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement[J]. Lancet Diabetes Endocrinol, 2019, 7(9): 715-725. DOI: 10.1016/S2213-8587(19)30084-1. [20] Karlsson T, Rask-Andersen M, Pan G, et al. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease[J]. Nat Med, 2019, 25(9): 1390-1395. DOI: 10.1038/s41591-019-0563-7. [21] Tokunaga K, Matsuzawa Y, Ishikawa K, et al. A novel technique for the determination of body fat by computed tomography[J]. Int J Obes, 1983, 7(5): 437-45. [22] Ferland M, Després JP, Tremblay A, et al. Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements[J]. Br J Nutr, 1989, 61(2): 139-148. DOI: 10.1079/bjn19890104. [23] Ross R, Aru J, Freeman J, et al. Abdominal adiposity and insulin resistance in obese men[J]. Am J Physiol Endocrinol Metab, 2002, 282(3): E657-E663. DOI: 10.1152/ajpendo.00469.2001. [24] Sam S, Haffner S, Davidson MH, et al. Hypertriglyceridemic waist phenotype predicts increased visceral fat in subjects with type 2 diabetes[J]. Diabetes Care, 2009, 32(10): 1916-1920. DOI: 10.2337/dc09-0412. [25] Alberti KG, Zimmet P, Shaw J, et al. The metabolic syndrome--a new worldwide definition[J]. Lancet, 2005, 366(9491): 1059-1062. DOI: 10.1016/S0140-6736(05)67402-8.