• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时变SEIQDR和ARIMA模型在上海市COVID-19预测中的应用和比较

许书君 马艺菲 罗雨欣 郭嘉铭 王彤 李建涛 雷立健 贺鹭 余红梅 解军

许书君, 马艺菲, 罗雨欣, 郭嘉铭, 王彤, 李建涛, 雷立健, 贺鹭, 余红梅, 解军. 时变SEIQDR和ARIMA模型在上海市COVID-19预测中的应用和比较[J]. 中华疾病控制杂志, 2023, 27(11): 1274-1281. doi: 10.16462/j.cnki.zhjbkz.2023.11.006
引用本文: 许书君, 马艺菲, 罗雨欣, 郭嘉铭, 王彤, 李建涛, 雷立健, 贺鹭, 余红梅, 解军. 时变SEIQDR和ARIMA模型在上海市COVID-19预测中的应用和比较[J]. 中华疾病控制杂志, 2023, 27(11): 1274-1281. doi: 10.16462/j.cnki.zhjbkz.2023.11.006
XU Shujun, MA Yifei, LUO Yuxin, GUO Jiaming, WANG Tong, LI Jiantao, LEI Lijian, HE Lu, YU Hongmei, XIE Jun. Application and comparison of time-varying SEIQDR and ARIMA models in COVID-19 prediction in Shanghai[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(11): 1274-1281. doi: 10.16462/j.cnki.zhjbkz.2023.11.006
Citation: XU Shujun, MA Yifei, LUO Yuxin, GUO Jiaming, WANG Tong, LI Jiantao, LEI Lijian, HE Lu, YU Hongmei, XIE Jun. Application and comparison of time-varying SEIQDR and ARIMA models in COVID-19 prediction in Shanghai[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(11): 1274-1281. doi: 10.16462/j.cnki.zhjbkz.2023.11.006

时变SEIQDR和ARIMA模型在上海市COVID-19预测中的应用和比较

doi: 10.16462/j.cnki.zhjbkz.2023.11.006
基金项目: 

国家重点研发计划 2021YFC2301603

山西省科技重大专项项目 202102130501003

山西省科技重大专项项目 202005D121008

详细信息
    通讯作者:

    解军,E-mail:junxiesxmu@163.com

    余红梅,E-mail:yu@sxmu.edu.cn

  • 中图分类号: R511; R181.8

Application and comparison of time-varying SEIQDR and ARIMA models in COVID-19 prediction in Shanghai

Funds: 

National Key Research and Development Program 2021YFC2301603

The Grant of the Major Science and Technology Project of Shanxi Province 202102130501003

The Grant of the Major Science and Technology Project of Shanxi Province 202005D121008

More Information
  • 摘要:   目的  根据时变易感者-潜伏者-感染者-隔离者-死亡者-康复者(susceptible-exposed-infected-quarantined-dead-removed, SEIQDR)模型和差分自回归移动平均(autoregressive integrated moving average, ARIMA)模型,针对上海市Omicron感染数据选择适合上海市疫情判断的预测模型。  方法  选用2022年3月1日—4月20日上海市COVID-19新增阳性感染者的数据进行拟合,选用2022年4月21日—5月30日的数据评估模型的预测效果。分别构建时变SEIQDR模型与ARIMA模型,通过比较决定系数(coefficient of determination, R2)、平均绝对误差(mean absolute error, MAE)和均方根误差(root mean squared error, RMSE)的大小评价模型的拟合及预测效果。  结果  时变SEIQDR模型和ARIMA模型的拟合效果均较优,R2分别为0.990和0.984。2个模型5 d的预测效果均尚可,对于20 d以及40 d预测效果,时变SEIQDR模型更优且更符合传染病传播的规律;前者的40 d预测MAE和RMSE分别为1 001.461和1 967.704,后者分别为1 265.331和2 068.094,且时变SEIQDR模型能较好地实现对上海市本轮疫情变化趋势及发病人数的复现。  结论  时变SEIQDR模型可较好地拟合及预测上海市COVID-19的发病人数及变化趋势,且模型效果优于ARIMA(2, 2, 0)。
  • 图  1  时变SEIQDR传播动力学模型示意图

    SEIQDR:易感者-潜伏者-感染者-隔离者-死亡者-康复者。

    Figure  1.  Schematic diagram of time-varying SEIQDR transmission dynamics model

    SEIQDR: susceptible-exposed-infected-quarantined-dead-removed.

    图  2  ARIMA模型流程图

    ARIMA:差分自回归移动平均。

    Figure  2.  Flow chart of ARIMA model

    ARIMA: autoregressive integrated moving average.

    图  3  时变SEIQDR模型拟合及预测图

    SEIQDR:易感者-潜伏者-感染者-隔离者-死亡者-康复者。

    Figure  3.  Fitting and prediction diagram of time-varying SEIQDR model

    SEIQDR: susceptible-exposed-infected-quarantined-dead-removed.

    图  4  新增阳性感染者时序图

    Figure  4.  Sequence diagram of the number of newly infected cases

    图  5  原始序列ACF和PACF图

    ACF:自相关;PACF:偏自相关。

    Figure  5.  ACF and PACF diagrams of the original sequence

    ACF: autocorrelation function; PACF: partial autocorrelation function.

    图  6  差分后序列的时序图

    Figure  6.  Sequence diagrams of the differential sequence

    图  7  二阶差分序列ACF和PACF图

    ACF:自相关;PACF:偏自相关。

    Figure  7.  ACF and PACF diagrams based on the second-order difference

    ACF: autocorrelation function; PACF: partial autocorrelation function.

    图  8  ARIMA模型残差Q-Q图

    ARIMA:差分自回归移动平均。

    Figure  8.  Residual Q-Q plot of ARIMA model

    ARIMA: autoregressive integrated moving average.

    图  9  ARIMA(2, 2, 0)模型与时变SEIQDR模型的拟合与预测对比

    ARIMA:差分自回归移动平均;SEIQDR:易感者-潜伏者-感染者-隔离者-死亡者-康复者。

    Figure  9.  Fitting and prediction comparison between the ARIMA (2, 2, 0) model and time-varying SEIQDR model

    ARIMA: autoregressive integrated moving average; SEIQDR: susceptible-exposed-infected-quarantined-dead-removed.

    表  1  时变SEIQDR模型参数赋值

    Table  1.   Parameter assignment of time-varying SEIQDR model

    参数 Parameters 描述 Interpretations 取值 Value 来源 Source
    β0 有效接触率 Effective contact rate 0.088 MCMC
    c 接触数 Number of contacts 20.000 实际疫情 Actual epidemic
    w 指数下降率(tt1) Index decline rate (tt1) 0.016 MCMC
    θ 潜伏者相对于感染者的传染率系数 Infectivity coefficient of exposed 0.997 MCMC
    q 隔离率 Quarantine rate 0.100 实际疫情 Actual epidemic
    σ 潜伏期倒数 Incubation rate 0.333 实际疫情 Actual epidemic
    δI 阳性感染者向住院患者的转化速率 Hospitalization rate of infected 0.801 MCMC
    δq 隔离潜伏者向住院患者的转化速率 Hospitalization rate of quarantined exposed 0.799 MCMC
    α 因病死亡率 Disease related mortality rate 0.002 实际疫情 Actual epidemic
    λ 隔离解除速率 Quarantine release rate 0.071 实际疫情 Actual epidemic
    γI 阳性感染者康复率 Recovery rate of infected 0.103 MCMC
    γH 住院患者康复率 Recovery rate of hospitalized 0.101 MCMC
    v 免疫阈值(疫苗接种率×疫苗保护率) Immunity threshold (vaccination rate×vaccine protection rate) 0.720 实际疫情 Actual epidemic
    h 抗体滴度水平下降率 Reduction rate of the antibody level 0.500 实际疫情 Actual epidemic
    注:SEIQDR, 易感者-潜伏者-感染者-隔离者-死亡者-康复者; MCMC, 马尔科夫链蒙特卡洛。
    Note: SEIQDR, susceptible-exposed-infected-quarantined-dead-removed; MCMC, Markov Chain Monte Carlo.
    下载: 导出CSV

    表  2  ARIMA模型参数估计和模型检验

    Table  2.   Parameter estimation and model testing of ARIMA model

    指标 Indicator ARIMA(0, 2, 3) ARIMA(2, 2, 0)
    估计值
    Estimated value
    t
    value
    P
    value
    估计值
    Estimated value
    t
    value
    P
    value
    参数估计 Parameter estimation
       AR(1) -0.605 -5.410 <0.001
       AR(2) -0.636 -5.675 <0.001
       MA(1) 0.631 4.418 <0.001
       MA(2) 0.191 1.137 0.262
       MA(3) -0.331 -2.314 0.025
    拟合优度 Goodness of fit
       AIC 856.170 849.350
       BIC 14.856 14.649
    Box-Ljung
       χ2 0.307 1.158
       P值 value 0.580 0.282
    注:1. AR,自回归;MA,移动平均;AIC,赤池信息准则;BIC,贝叶斯信息准则。
    2. “—”表示该模型不存在此阶参数。
    Note: 1. AR, autoregressive; MA, moving average; AIC, Akaike information criterion; BIC, Bayesian information criterion.
    2. "—" the model does not have this order parameter.
    下载: 导出CSV

    表  3  模型评价指标对比

    Table  3.   Comparison of model evaluation indexs

    模型 Model 拟合R2
    Fitted R2
    预测天数
    Predicted number of days
    预测效果 Predicted effects
    MAE RMSE
    时变SEIQDR  Time-varying SEIQDR model 0.990 5 d 5 195.653 5 637.511
    20 d 1 741.019 2 604.237
    40 d 1 001.461 1 967.704
    ARIMA(2, 2, 0) 0.984 5 d 4 286.145 4 757.543
    20 d 1 850.111 2 851.169
    40 d 1 265.331 2 068.094
    注:SEIQDR,易感者-潜伏者-感染者-隔离者-死亡者-康复者;ARIMA,差分自回归移动平均;R2,决定系数;MAE,平均绝对误差;RMSE,均方根误差。
    Note:SEIQDR,susceptible-exposed-infected-quarantined-dead-removed;ARIMA,autoregressive integrated moving average;R2,coefficient of determination;MAE,mean absolute error; RMSE,root mean squared error.
    下载: 导出CSV
  • [1] Wang C, Horby PW, Hayden FG, et al. A novel coronavirus outbreak of global health concern[J]. Lancet, 2020, 395(10223): 470-473. DOI: 10.1016/S0140-6736(20)30185-9.
    [2] World Health Organization. COVID-19 numbers at a glance[EB/OL]. (2022-11-30)[2022-12-25]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
    [3] 肖燕妮, 李倩, 周伟柯, 等. 新型冠状病毒肺炎疫情多次暴发的动力学机制分析[J]. 中华流行病学杂志, 2021, 42(6): 966-976. DOI: 10.3760/cma.j.cn112338-20210219-00123.

    Xiao YN, Li Q, Zhou WK, et al. Analysis on dynamical mechanism of multi outbreaks of COVID-19[J]. Chin J Epidemiol, 2021, 42(6): 966-976. DOI: 10.3760/cma.j.cn112338-20210219-00123.
    [4] Saikia D, Bora K, Bora MP. COVID-19 outbreak in India: an SEIR model-based analysis[J]. Nonlinear Dyn, 2021, 104(4): 4727-4751. DOI: 10.1007/s11071-021-06536-7.
    [5] Feng S, Feng Z, Ling C, et al. Prediction of the COVID-19 epidemic trends based on SEIR and AI models[J]. PLoS One, 2021, 16(1): e0245101. DOI: 10.1371/journal.pone.0245101.
    [6] Toǧa G, Atalay B, Toksari MD. COVID-19 prevalence forecasting using Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN): case of Turkey[J]. J Infect Public Health, 2021, 14(7): 811-816. DOI: 10.1016/j.jiph.2021.04.015.
    [7] Yousaf M, Zahir S, Riaz M, et al. Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan[J]. Chaos Solitons Fractals, 2020, 138: 109926. DOI: 10.1016/j.chaos.2020.109926.
    [8] Ma Y, Xu S, An Q, et al. Coronavirus disease 2019 epidemic prediction in Shanghai under the "dynamic zero-COVID policy" using time-dependent SEAIQR model[J]. J Biosaf Biosecur, 2022, 4(2): 105-113. DOI: 10.1016/j.jobb.2022.06.002.
    [9] Meng P, Huang J, Kong D. Prediction of incidence trend of influenza-like illness in Wuhan based on ARIMA model[J]. Comput Math Methods Med, 2022, 2022: 6322350. DOI: 10.1155/2022/6322350.
    [10] Singh S, Murali Sundram B, Rajendran K, et al. Forecasting daily confirmed COVID-19 cases in Malaysia using ARIMA models[J]. J Infect Dev Ctries, 2020, 14(9): 971-976. DOI: 10.3855/jidc.13116.
    [11] 王燕. 时间序列分析-基于R[M]. 北京: 中国人民大学出版社, 2015: 142-147.

    Wang Y. Time series analysis: with R[M]. Beijing: China Renmin University Press, 2015: 142-147.
    [12] 魏永越, 卢珍珍, 杜志成, 等. 基于改进的SEIRΛ+CAQ传染病力学模型进行新型冠状病毒肺炎疫情趋势分析[J]. 中华流行病学杂志, 2020, 41(4): 470-475. DOI: 10.3760/cma.j.cn112338-20200216-00106.

    Wei YY, Lu ZZ, Du ZC, et al. Fitting and forecasting the trend of COVID-19 by SEIRΛ+CAQ dynamic model[J]. Chin J Epidemiol, 2020, 41(4): 470-475. DOI: 10.3760/cma.j.cn112338-20200216-00106.
    [13] 唐三一, 肖燕妮, 彭志行, 等. 新型冠状病毒肺炎疫情预测建模、数据融合与防控策略分析[J]. 中华流行病学杂志, 2020, 41(4): 480-484. DOI: 10.3760/cma.j.cn112338-20200216-00107.

    Tang SY, Xiao YN, Peng ZX, et al. Prediction modeling with data fusion and prevention strategy analysis for the COVID-19 outbreak[J]. Chin J Epidemiol, 2020, 41(4): 480-484. DOI: 10.3760/cma.j.cn112338-20200216-00107.
    [14] 陈佳丽, 金美玲, 王霞, 等. 基于SVEPIUHDR传播动力学模型的新型冠状病毒肺炎疫情趋势分析[J]. 中华流行病学杂志, 2021, 42(8): 1341-1346. DOI: 10.3760/cma.j.cn112338-20210225-00147.

    Chen JL, Jin ML, Wang X, et al. Fitting and predicting trend of COVID-19 by SVEPIUHDR dynamic mode[J]. Chin J Epidemiol, 2021, 42(8): 1341-1346. DOI: 10.3760/cma.j.cn112338-20210225-00147.
    [15] Cai J, Deng X, Yang J, et al. Modeling transmission of SARS-CoV-2 Omicron in China[J]. Nat Med, 2022, 28(7): 1468-1475. DOI: 10.1038/s41591-022-01855-7.
    [16] Girardi P, Gaetan C. An SEIR model with time-varying coefficients for analyzing the SARS-CoV-2 epidemic[J]. Risk Anal, 2023, 43(1): 144-155. DOI: 10.1111/risa.13858.
    [17] Yang Q, Wang J, Ma H, et al. Research on COVID-19 based on ARIMA model Δ -Taking Hubei, China as an example to see the epidemic in Italy[J]. J Infect Public Health, 2020, 13(10): 1415-1418. DOI: 10.1016/j.jiph.2020.06.019.
    [18] Saba AI, Elsheikh AH. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks[J]. Process Saf Environ Prot, 2020, 141: 1-8. DOI: 10.1016/j.psep.2020.05.029.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  74
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-15
  • 修回日期:  2023-03-15
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-11-10

目录

    /

    返回文章
    返回