• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

lncRNAs与肺腺癌因果关联的两样本孟德尔随机化研究

孙继宏 丛静 王萍玉

孙继宏, 丛静, 王萍玉. lncRNAs与肺腺癌因果关联的两样本孟德尔随机化研究[J]. 中华疾病控制杂志, 2023, 27(11): 1350-1353. doi: 10.16462/j.cnki.zhjbkz.2023.11.017
引用本文: 孙继宏, 丛静, 王萍玉. lncRNAs与肺腺癌因果关联的两样本孟德尔随机化研究[J]. 中华疾病控制杂志, 2023, 27(11): 1350-1353. doi: 10.16462/j.cnki.zhjbkz.2023.11.017
SUN Jihong, CONG Jing, WANG Pingyu. A two-sample Mendelian randomized study of causality between lncRNAs and lung adenocarcinoma[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(11): 1350-1353. doi: 10.16462/j.cnki.zhjbkz.2023.11.017
Citation: SUN Jihong, CONG Jing, WANG Pingyu. A two-sample Mendelian randomized study of causality between lncRNAs and lung adenocarcinoma[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(11): 1350-1353. doi: 10.16462/j.cnki.zhjbkz.2023.11.017

lncRNAs与肺腺癌因果关联的两样本孟德尔随机化研究

doi: 10.16462/j.cnki.zhjbkz.2023.11.017
基金项目: 

国家自然科学基金 81772281

山东省自然科学基金 ZR2020KH015

详细信息
    通讯作者:

    王萍玉,E-mail:wpingyugirl@163.com

  • 中图分类号: R734.2

A two-sample Mendelian randomized study of causality between lncRNAs and lung adenocarcinoma

Funds: 

National Natural Science Foundation of China 81772281

Natural Science Foundation of Shandong Province ZR2020KH015

More Information
  • 摘要:   目的  利用两样本孟德尔随机化方法探究长链非编码RNAs(long-chain non-coding RNAs, lncRNAs)与肺腺癌发病风险之间的因果关联。  方法  采用肺腺癌全基因组关联分析数据和eQTL Gene联盟的cis-eQTL数据集,将与肺腺癌密切相关的单核苷酸多态性(single nucleotide polymorphisms, SNPs)作为工具变量,运用逆方差加权法、MR-Egger回归模型、加权中位数分析法、简单模式法和加权模式法5种两样本孟德尔随机化(Mendelian randomization, MR)模型来评估lncRNAs与肺腺癌之间的因果效应,并进行异质性检验、基因多效性检验和敏感性分析来评估结果的可靠性和稳定性。  结果  PVT1、LINC00824、Z94721.1与肺腺癌的关联效应值差异有统计学意义(均P<0.05),PVT1(与肺腺癌的效应值OR=0.79,95% CI:0.71~0.89)、LINC00824(与肺腺癌的效应值OR=0.59,95% CI:0.42~0.83)降低了原发性支气管肺癌(肺癌)的发病风险;而Z94721.1(与肺腺癌的效应值OR=1.09,95% CI:1.03~1.16)增加肺癌的发病风险,并且均通过了异质性检验、基因多效性检验和敏感性分析。  结论  PVT1、LINC00824、Z94721.1 3个lncRNAs与肺腺癌之间存在稳定的因果关联,为肺腺癌发病机制的研究提供了重要理论依据。
  • 图  1  两样本孟德尔随机化研究中工具变量核心假设示意图

    Figure  1.  Schematic diagram of the core hypothesis of instrumental variables in two-sample mendelian randomization study

    图  2  3个lncRNA的5种MR模型散点图

    MR:孟德尔随机化;IVW:逆方差加权法;MR Egger:MR-Egger回归;SM:简单模式法;WME: 加权中位数法;WM:加权模式法;LUAD:肺腺癌;SNPs:单核苷酸多态性。

    Figure  2.  Scatter plots of 5 mendelian randomization models

    MR: Mendelian randomization; IVW: inverse variance weighted; MR Egger: mendelian randomization Egger regression; SM: simple mode; WME: weighted median estimator; WM: weighted mode; LUAD: lung adenocarcinoma SNPs: single nucleotide polymorphisms.

    表  1  lncRNAs的MR分析效应值结果

    Table  1.   Mendelian randomization estimates of lncRNAs

    lncRNAs Ensembl ID MR法MR method SNPs β sx OR值value (95% CI) P值value
    PVT1 ENSG00000249859 IVW 26 -0.23 0.06 0.79(0.71~0.89) 4.22×10-5
    LINC00824 ENSG00000254275 IVW 3 -0.53 0.18 0.59(0.42~0.83) 2.89×10-3
    Z94721.1 ENSG00000227598 IVW 14 0.09 0.03 1.09(1.03~1.16) 4.08×10-3
    LINC01891 ENSG00000231682 IVW 22 0.03 0.03 1.03(0.98~1.10) 2.56×10-1
    LINC00511 ENSG00000227036 IVW 14 -0.02 0.04 0.98(0.91~1.06) 5.82×10-1
    AC092142.1 ENSG00000261235 Wald Ratio 1 -0.34 0.44 0.71(0.30~1.67) 4.37×10-1
    注:lncRNAs:长链非编码RNAs; MR: 孟德尔随机化; IVW,逆方差加权法;SNPs,单核苷酸多态性。
    Notes: lncRNAs:long non-coding RNAs; MR: Mendelian randomization; IVW, inverse variance weighted; SNPs, single nucleotide polymorphisms.
    下载: 导出CSV

    表  2  lncRNAs的MR分析效应值结果

    Table  2.   Mendelian randomization estimates of lncRNAs

    lncRNAs Ensemble ID MR法MR method β sx OR值value (95% CI) P值value P异质性检验
    Pheterogeneity
    P多效性检验
    Ppleiotropy
    PVT1 ENSG00000249859 MR Egger -0.34 0.10 0.71(0.58~0.87) 3.24×10-3 0.467 0.245
    WME -0.24 0.08 0.79(0.68~0.92) 2.26×10-3
    IVW -0.23 0.06 0.79(0.71~0.89) 4.22×10-5 0.444
    简单模式法Simple mode -0.25 0.14 0.78(0.60~1.02) 7.84×10-2
    加权模式法Weighted mode -0.23 0.08 0.79(0.68~0.92) 6.58×10-3
    LINC00824 ENSG00000254275 MR Egger -0.35 0.65 0.70(0.20~2.51) 6.85×10-1 0.392 0.821
    WME -0.47 0.20 0.62(0.42~0.93) 2.07×10-2
    IVW -0.53 0.18 0.59(0.42~0.83) 2.89×10-3 0.665
    简单模式法Simple mode -0.42 0.25 0.65(0.40~1.07) 2.32×10-1
    加权模式法Weighted mode -0.44 0.25 0.64(0.40~1.04) 2.17×10-1
    Z94721.1 ENSG00000227598 MR Egger 0.02 0.06 1.02(0.91~1.14) 7.53×10-1 0.868 0.175
    WME 0.08 0.04 1.08(1.00~1.18) 5.05×10-2
    IVW 0.09 0.03 1.09(1.03~1.16) 4.08×10-3 0.779
    简单模式法Simple mode 0.07 0.07 1.07(0.93~1.23) 3.70×10-1
    加权模式法Weighted mode 0.07 0.05 1.07(0.97~1.17) 1.82×10-1
    注:1. lncRNAs:长链非编码RNAs; MR: 孟德尔随机化; MR Egger,MR-Egger回归;WME,加权中位数法;IVW,逆方差加权法。
    2. “-”表示无数值。
    Notes: 1. lncRNAs:long non-coding RNAs; MR: Mendelian randomization; MR Egger, Mendelian randomization Egger regression; WME, weighted median estimator; IVW, inverse variance weighted.
    2. "-" represents an infinite number of value.
    下载: 导出CSV
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2] Hutchinson BD, Shroff GS, Truong MT, et al. Spectrum of lung adenocarcinoma[J]. Semin Ultrasound CT MR, 2019, 40(3): 255-264. DOI: 10.1053/j.sult.2018.11.009.
    [3] 王宇松, 吉晓莹, 穆楠, 等. 非小细胞肺癌分子靶向治疗标志物研究进展[J]. 中国癌症防治杂志, 2020, 12(3): 285-290. DOI: 10.3969/j.issn.1674-5671.2020.03.09.

    Wang YS, Ji XY, Mu N, et al. Research progress of molecular targeted therapy markers for non-small cell lung cancer[J]. Chin J Oncol Prev Treat, 2020, 12(3): 285-290. DOI: 10.3969/j.issn.1674-5671.2020.03.09.
    [4] Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J]. Science, 2010, 329(5992): 689-693. DOI: 10.1126/science.1192002.
    [5] Feng C, Zhao Y, Li Y, et al. LncRNA MALAT1 promotes lung cancer proliferation and gefitinib resistance by acting as a miR-200a sponge[J]. Arch Bronconeumol (Engl Ed), 2019, 55(12): 627-633. DOI: 10.1016/j.arbres.2019.03.026.
    [6] Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations[J]. Int J Epidemiol, 2004, 33(1): 30-42. DOI: 10.1093/ije/dyh132.
    [7] 王莉娜, Zhang Zuofeng. 孟德尔随机化法在因果推断中的应用[J]. 中华流行病学杂志, 2017, 38(4): 547-552. DOI: 10.3760/cma.j.issn.0254-6450.2017.04.027.

    Wang LN, Zhang ZF. Mendelian randomization approach, used for causal inferences[J]. Chin J Epidemiol, 2017, 38(4): 547-552. DOI: 10.3760/cma.j.issn.0254-6450.2017.04.027.
    [8] Wang Y, McKay JD, Rafnar T, et al. Corrigendum: Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer[J]. Nat Genet, 2017, 49(4): 651. DOI: 10.1038/ng0417-651a.
    [9] Horsfall LJ, Burgess S, Hall I, et al. Genetically raised serum bilirubin levels and lung cancer: a cohort study and Mendelian randomisation using UK Biobank[J]. Thorax, 2020, 75(11): 955-964. DOI: 10.1136/thoraxjnl-2020-214756.
    [10] Võsa U, Claringbould A, Westra HJ, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression[J]. Nat Genet, 2021, 53(9): 1300-1310. DOI: 10.1038/s41588-021-00913-z.
    [11] Sanderson E, Davey Smith G, Windmeijer F, et al. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings[J]. Int J Epidemiol, 2019, 48(3): 713-727. DOI: 10.1093/ije/dyy262.
    [12] Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review[J]. Res Synth Methods. 2019, 10(4): 486-496. DOI: 10.1002/jrsm.1346.
    [13] Hartwig FP, Davey SG, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption[J]. Int J Epidemiol, 2017, 46(6): 1985-1998. DOI: 10.1093/ije/dyx102.
    [14] Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology[J]. Stat Medi, 2008, 27(8): 1133-1163. DOI: 10.1002/sim.3034.
    [15] Zhou W, Liu G, Hung RJ, et al. Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization[J]. Int J Cancer, 2021, 148(5): 1077-1086. DOI: 10.1002/ijc.33292.
    [16] Wong J, Zhang H, Hsiung CA, et al. Tuberculosis infection and lung adenocarcinoma: Mendelian randomization and pathway analysis of genome-wide association study data from never-smoking Asian women[J]. Genomics, 2020, 112(2): 1223-1232. DOI:10. 1016/j.ygeno. 2019.07.008.
    [17] Zhang Z, Li H, Li J, et al. Polymorphisms in the PVT1 gene and susceptibility to the lung cancer in a Chinese northeast population: a case-control study[J]. J Cancer, 2020, 11(2): 468-478. DOI: 10.7150/jca.34320.
    [18] Zhou X, Zhang Y, Zhang Y, et al. LINC01414/LINC00824 genetic polymorphisms in association with the susceptibility of chronic obstructive pulmonary disease[J]. BMC Pulm Med, 2021, 21(1): 213. DOI: 10.1186/s12890-021-01579-3.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  185
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-06-09
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-11-10

目录

    /

    返回文章
    返回