Factors for the abundance and richness of parasitic fleas of wild small mammals in Jianchuan plague foci of Yunnan Province
-
摘要:
目的 分析鼠形动物特征和环境因子与鼠形动物寄生蚤的关系,明确影响云南剑川鼠疫疫源地野外鼠形动物寄生蚤丰盛度和丰富度的因素。 方法 选取剑川县作为采样点,分别在4个季节不同海拔梯度进行鼠形动物、寄生蚤、环境因子取样。使用跨栏模型分析环境因子(季节、生境、海拔)和鼠形动物特征指标(种类、性别、年龄、体长、体重等)与鼠形动物寄生蚤丰盛度和丰富度的关系。 结果 寄生蚤丰盛度跨栏负二项回归模型多因素分析结果显示:相比于春季,夏季、秋季、冬季的染蚤率分别降低了68%、78%、45%。与耕地相比,林地中野外鼠形动物染蚤数量减少了35%。与齐氏姬鼠相比,大绒鼠的染蚤率增加了0.41倍,中华姬鼠的染蚤率降低54%,其他种类的鼠形动物染蚤率降低了39%;中华姬鼠的染蚤数量降低60%。雌性鼠形动物染蚤率降低了25%。成年的鼠形动物染蚤数量降低了44%。体长>100 mm、耳高>13 mm的鼠形动物染蚤率分别增加了0.48、0.53倍。尾长>13 mm的鼠形动物的染蚤数量降低了49%。寄生蚤丰富度跨栏Poisson回归模型多因素分析结果显示:相比于春季,夏季、秋季、冬季的染蚤率显著降低,分别降低了68%、78%、45%。林地比耕地染蚤种类降低了47%。与齐氏姬鼠相比,大绒鼠染蚤率增加了0.41倍,中华姬鼠的染蚤率降低54%,其他鼠形动物种类染蚤率减低了39%。雌性鼠形动物染蚤率降低了25%。体长>100 mm、耳高>13 mm的鼠形动物染蚤率分别增加了0.48、0.53倍。 结论 影响寄生蚤丰盛度的因素包括季节、生境,以及鼠形动物种类、性别、年龄、体长、尾长、耳高。影响寄生蚤丰富度的因素包括季节、生境,以及鼠形动物种类、性别、体长、耳高。 Abstract:Objective To analyze the relationship between small mammal characteristics and environmental factors and parasitic fleas, as well as to identify the factors affecting the abundance and richness of parasitic fleas in wild small mammals in Jianchuan plague foci. Methods The small mammals, parasitic fleas and environmental factors were collected in different altitudes of Jianchuan county across four seasons. Utilizing the hurdle model, the study analyzed the factors affecting the abundance and richness of parasitic fleas in environmental factors (season, habitat, and elevation) and small mammal characteristics (species, sex, age, body length, tail length, hindfoot length, ear height, and weight). Results The multivariate hurdle negative binomial model of the abundance of parasitic fleas showed that the flea infestation rates of wild small mammals were reduced by 68%, 78%, and 45% in summer, autumn, and winter, respectively, compared to the spring season. There was a 35% reduction in wild small mammals in woodlands compared to the cultivated field. The flea infestation rate increased by 0.41 times for Eothenomys mileyus, decreased by 54% for Apodemus draco, and decreased by 39% for other species compared to Apodemus chevrieri. The number of infected fleas decreased by 60% for Apodemus draco compared to Apodemus chevrieri. The rate of flea infestation in female small mammals was reduced by 25%. The number of infected fleas in adult small mammals was reduced by 44%. The flea infestation rate increased by 0.48 and 0.53 times for longer body length and taller ear height, respectively. Infected fleas decreased by 49% in small mammals with longer tail lengths. The result of the multivariate Poisson hurdle model of the richness of parasitic fleas showed that the flea infestation rate was significantly lower in summer, autumn, and winter compared to spring, with 68%, 78%, and 45% decreased in distribution. Woodlands had 47% lower infected flea species than the cultivated field. The flea infestation rate increased 0.41 times for Eothenomys mileyus, 54% lower for Apodemus draco, and 39% lower for other small mammal species compared to Apodemus chevrieri. The rate of flea infestation in female small mammals was reduced by 25%. The flea infestation rate increased by 0.48 and 0.53 times for the longer body length and taller ear height, respectively. Conclusions Season, habitat, small mammal species, sex, age, body length, tail length, and ear height affected the abundance of parasitic fleas. Season, habitat, small mammal species, gender, body length, and ear height affected the richness of parasitic fleas. -
Key words:
- Parasitic fleas /
- Abundance /
- Richness /
- Small mammals /
- Influencing factors
-
表 1 鼠形动物寄生蚤丰盛度单因素跨栏负二项回归分析结果
Table 1. Univariate hurdle negative binomial model on the abundance of parasitic fleas on small mammals
变量Variable 寄生蚤数
(占比/%)
Number of parasitic
fleas (proportion/%)Logistic回归
Logistic regression负二项回归
Negative binomial regressionP值
value
(LR test)0 1~27 OR值value
(95% CI)P值
valueAR值value
(95% CI)P值
value季节Season <0.001 春季Spring 141(18.29) 116(39.32) 1.00 1.00 夏季Summer 192(24.90) 56(18.98) 0.35(0.24~0.52) <0.001 0.76(0.44~1.32) 0.328 秋季Autumn 243(31.52) 40(13.56) 0.20(0.13~0.30) <0.001 0.56(0.29~1.06) 0.077 冬季Winter 195(25.29) 83(28.14) 0.52(0.36~0.74) <0.001 0.93(0.57~1.50) 0.752 生境Habitat <0.001 耕地Cultivated field 285(36.96) 146(49.49) 1.00 1.00 灌丛Bushwood 162(21.01) 64(21.69) 0.77(0.54~1.10) 0.147 0.94(0.57~1.56) 0.827 林地Woodland 324(42.02) 85(28.81) 0.51(0.38~0.70) <0.001 0.62(0.39~1.00) 0.051 海拔/m Elevation/m 0.360 2 300~<2 500 230(29.83) 91(30.85) 1.00 1.00 2 500~<2 700 441(57.20) 153(51.86) 0.87(0.65~1.19) 0.398 0.93(0.59~1.47) 0.755 ≥2 700 100(12.97) 51(17.29) 1.29(0.85~1.95) 0.231 1.13(0.62~2.04) 0.697 鼠形动物种类Small mammals′species <0.001 齐氏姬鼠Apodemus chevrieri 368(47.73) 123(41.69) 1.00 1.00 大绒鼠Eothenomys mileyus 221(28.66) 132(44.75) 1.79(1.33~2.40) <0.001 2.37(1.59~3.52) <0.001 中华姬鼠Apodemus draco 104(13.49) 20(6.78) 0.58(0.34~0.97) 0.037 0.42(0.15~1.14) 0.089 其他鼠种Other species of small mammals 78(10.12) 20(6.78) 0.77(0.45~1.31) 0.329 1.53(0.72~3.24) 0.267 性别Gender 0.007 雄性Male 394(51.10) 176(59.66) 1.00 1.00 雌性Female 377(48.90) 119(40.34) 0.71(0.54~0.93) 0.124 0.67(0.45~1.00) 0.053 成年Adult 0.007 否No 74(9.60) 17(5.76) 1.00 1.00 是Yes 697(90.40) 278(94.24) 1.74(1.01~2.99) 0.047 0.41(0.19~0.90) 0.027 体重/g Weight/g 0.002 ≤30 419(54.35) 126(42.71) 1.00 1.00 >30 352(45.65) 169(57.29) 1.60(1.22~2.09) 0.001 1.17(0.78~1.75) 0.455 体长/mm Body length/mm 0.002 ≤100 421(54.60) 125(42.37) 1.00 1.00 >100 350(45.40) 170(57.63) 1.64(1.25~2.15) <0.001 1.07(0.71~1.61) 0.741 尾长/mm Tail length/mm <0.001 ≤72 394(51.10) 175(59.32) 1.00 1.00 >72 377(48.90) 120(40.68) 0.72(0.55~0.94) 0.016 0.36(0.24~0.54) 0.210 后足长/mm Hind foot length/mm 0.115 ≤20 403(52.27) 142(48.14) 1.00 1.00 >20 368(47.73) 153(51.86) 1.18(0.90~1.54) 0.236 0.71(0.48~1.05) 0.087 耳高/mm Ear height/mm 0.002 ≤13 462(59.92) 155(52.54) 1.00 1.00 >13 309(40.08) 140(47.46) 1.36(1.04~1.78) 0.027 0.58(0.39~0.86) 0.006 表 2 鼠形动物寄生蚤丰盛度多因素跨栏负二项回归分析结果
Table 2. Multivariate hurdle negative binomial model on the abundance of parasitic fleas on small mammals
变量Variable Logistic回归
Logistic regressionP值
value
(LR test)负二项分布回归
Negative binomial regressionP值
value
(LR test)OR值value
(95% CI)P值
valueOR值value
(95% CI)P值
value季节Season <0.001 春季Spring 1.00 夏季Summer 0.32(0.21~0.48) <0.001 秋季Autumn 0.22(0.14~0.34) <0.001 冬季Winter 0.55(0.38~0.79) 0.001 生境Habitat 0.096 耕地Cultivated field 1.00 灌丛Bushwood 1.02(0.70~1.57) 0.932 林地Woodland 0.65(0.42~0.98) 0.041 鼠形动物种类Small mammals′species <0.001 0.055 齐氏姬鼠Apodemus chevrieri 1.00 1.00 大绒鼠Eothenomys mileyus 1.41(0.99~2.00) 0.055 1.38(0.82~2.32) 0.232 中华姬鼠Apodemus draco 0.46(0.27~0.80) 0.005 0.40(0.15~1.07) 0.067 其他鼠种Other species of small mammals 0.61(0.34~1.08) 0.087 1.61(0.79~3.28) 0.192 性别Gender 0.050 雄性Male 1.00 雌性Female 0.75(0.56~1.00) 0.051 成年Adult 0.070 否No 1.00 是Yes 0.56(0.29~1.06) 0.074 体长/mm Body length/mm 0.022 ≤100 1.00 >100 1.48(1.06~2.07) 0.023 尾长/mm Tail length/mm 0.014 ≤72 1.00 >72 0.51(0.29~0.87) 0.014 耳高/mm Ear height/mm 0.009 ≤13 1.00 >13 1.53(1.11~2.10) 0.009 表 3 鼠形动物寄生蚤丰富度单因素跨栏Poisson回归分析结果
Table 3. Univariate hurdle Poisson model on the richness of parasitic fleas on small mammals
变量Variable 寄生蚤数(占比/%)
Number of parasitic fleas (proportion/%)Logistic回归
Logistic regressionPoisson回归
Poisson regressionP值
value
(LR test)0 1~3 OR值value
(95% CI)P值
valueRR值value
(95% CI)P值
value季节Season <0.001 春季Spring 141(18.29) 116(39.32) 1.00 1.00 夏季Summer 192(24.90) 56(18.98) 0.35(0.24~0.52) <0.001 1.18(0.64~2.18) 0.595 秋季Autumn 243(31.52) 40(13.56) 0.20(0.13~0.30) <0.001 1.10(0.55~2.24) 0.776 冬季Winter 195(25.29) 83(28.14) 0.52(0.36~0.74) <0.001 1.17(0.68~2.02) 0.576 生境Habitat <0.001 耕地Cultivated field 285(36.96) 146(49.49) 1.00 1.00 灌丛Bushwood 162(21.01) 64(21.69) 0.77(0.54~1.10) 0.147 1.18(0.71~1.96) 0.520 林地Woodland 324(42.02) 85(28.81) 0.51(0.38~0.70) <0.001 0.53(0.28~1.00) 0.051 海拔/m Elevation/m 0.063 2 300~<2 500 230(29.83) 91(30.85) 1.00 1.00 2 500~<2 700 441(57.20) 153(51.86) 0.88(0.65~1.19) 0.398 0.79(0.47~1.33) 0.374 >2 700 100(12.97) 51(17.29) 1.29(0.85~1.95) 0.231 1.49(0.84~2.66) 0.168 鼠形动物种类Small mammals′species <0.001 齐氏姬鼠Apodemus chevrieri 368(47.73) 123(41.69) 1.00 1.00 大绒鼠Eothenomys mileyus 221(28.66) 132(44.75) 1.79(1.33~2.40) <0.001 0.84(0.54~1.37) 0.527 中华姬鼠Apodemus draco 104(13.49) 20(6.78) 0.58(0.34~0.97) 0.037 0.55(0.17~1.73) 0.304 其他鼠种Other species of small mammals 78(10.12) 20(6.78) 0.77(0.45~1.31) 0.329 0.55(0.17~1.73) 0.304 性别Gender 0.025 雄性Male 394(51.10) 176(59.66) 1.00 1.00 雌性Female 377(48.90) 119(40.34) 0.71(0.54~0.93) 0.012 0.78(0.49~1.25) 0.307 成年Adult 0.115 否No 74(9.60) 17(5.76) 1.00 1.00 是Yes 697(90.40) 278(94.24) 1.74(1.01~2.99) 0.047 1.05(0.40~2.79) 0.920 体重/g Weight/g 0.002 ≤30 419(54.35) 126(42.71) 1.00 1.00 >30 352(45.65) 169(57.29) 1.60(1.22~2.09) 0.001 0.86(0.55~1.35) 0.519 体长/mm Body length/mm 0.002 ≤100 421(54.60) 125(42.37) 1.00 1.00 >100 350(45.40) 170(57.63) 1.64(1.25~2.15) <0.001 1.00(0.64~1.56) 0.988 尾长/mm Tail length/mm 0.047 ≤72 394(51.10) 175(59.32) 1.00 1.00 >72 377(48.90) 120(40.68) 0.72(0.55~0.94) 0.016 1.13(0.72~1.76) 0.596 后足长/mm Hind foot length/mm 0.428 ≤20 403(52.27) 142(48.14) 1.00 1.00 >20 368(47.73) 153(51.86) 1.18(0.90~1.54) 0.236 1.13(0.72~1.77) 0.589 耳高/mm Ear height/mm 0.074 ≤13 462(59.92) 155(52.54) 1.00 1.00 >13 309(40.08) 140(47.46) 1.35(1.04~1.78) 0.027 1.13(0.72~1.76) 0.594 表 4 鼠形动物寄生蚤丰富度多因素跨栏Poisson回归分析结果
Table 4. Multivariate hurdle Poisson model on the richness of parasitic fleas on small mammals
变量Variable Logistic回归
Logistic regressionP值
value
(LR test)Poisson回归
Poisson regressionP值
value
(LR test)OR值value
(95% CI)P值
valueOR值value
(95% CI)P值
value季节Season <0.001 春季Spring 1.00 夏季Summer 0.32(0.21~0.48) <0.001 秋季Autumn 0.22(0.14~0.34) <0.001 冬季Winter 0.55(0.38~0.79) 0.001 生境Habitat 0.047 耕地Cultivated field 1.00 灌丛Bushwood 1.18(0.71~1.96) 0.520 林地Woodland 0.53(0.28~1.00) 0.051 鼠形动物种类Small mammals′species <0.001 齐氏姬鼠Apodemus chevrieri 1.00 大绒鼠Eothenomys mileyus 1.41(0.99~2.00) 0.053 中华姬鼠Apodemus draco 0.46(0.27~0.80) 0.005 其他鼠种Other species of small mammals 0.61(0.34~1.07) 0.096 性别Gender 0.050 雄性Male 1.00 雌性Female 0.75(0.56~1.00) 0.051 体长/mm Body length/mm 0.022 ≤100 1.00 >100 1.48(1.06~2.07) 0.018 耳高/mm Ear height/mm 0.009 ≤13 1.00 >13 1.53(1.11~2.10) 0.009 -
[1] 石丽媛, 丁奕博, 张海鹏, 等. 云南省剑川县鼠疫疫源地分离菌株基因组多态性[J]. 中国人兽共患病学报, 2020, 36(1):20-24. DOI: 10.3969/j.issn.1002-2694.2019.00.180.Shi LY, Ding YB, Zhang HP, et al. Genomic polymorphism of Yersinia pestis strains isolated from the wild rodents plague focus in Jianchuan, Yunnan, China[J]. Chin J Zoonoses, 2020, 36(1): 20-24. DOI: 10.3969/j.issn.1002-2694.2019.00.180. [2] 王梦迪, 周芸, 徐丹丹, 等. 云南省玉龙鼠疫疫源地野外鼠形动物寄生蚤丰盛度影响因素分析[J]. 昆虫学报, 2019, 62(9): 1109-1116. DOI: 10.16380/j.kcxb.2019.09.012.Wang MD, Zhou Y, Xu DD, et al. Analysis of factors affecting the abundance of parasitic fleas on wild myomorph rodents in the Yulong plague focus of Yunnan Province, southwestern China[J]. Acta Entomologica Sinica, 2019, 62(9): 1109-1116. DOI: 10.16380/j.kcxb.2019.09.012. [3] 武丽, 尹家祥. 蚤类与环境因素关系概述[J]. 中国媒介生物学及控制杂志, 2021, 32(6): 779-782. DOI: 10.11853/j.issn.1003.8280.2021.06.023.Wu L, Yin JX. An overview of the relationship between fleas and environmental lactors[J]. Chin J Vector Biol Control, 2021, 32(6): 779-782. DOI: 10.11853/j.issn.1003.8280.2021.06.023. [4] 尹家祥, 钟佑宏, 杜春红, 等. 云南省家鼠鼠疫疫源地室内黄胸鼠丰盛度预测因子的研究[J]. 中华流行病学杂志, 2013, 34(2): 157-159. DOI: 10.3760/cma.j.issn.0254-6450.2013.02.012.Yin JX, Zhong YH, Du CH, et al. Predictors for abundance of Rattus tanezumi in households of commensal rodent plague foci[J]. Chin J Epidemiol, 2013, 34(2): 157-159. DOI: 10.3760/cma.j.issn.0254-6450.2013.02.012. [5] 王秀芳, 尹家祥, 杨光璨, 等. 滇西鼠传疾病疫源地室内鼠形动物丰盛度影响因素分析[J]. 中华流行病学杂志, 2015, 36(2): 139-143. DOI: 10.3760/cma.j.issn.0254-6450.2015.02.009.Wang XF, Yin JX, Yang GC, et al. Factors related to household rodent abundance in rodent-borne disease foci in western Yunnan[J]. Chin J Epidemiol, 2015, 36(2): 139-143. DOI: 10.3760/cma.j.issn.0254-6450.2015.02.009. [6] Krasnov BR, Khokhlova IS, Fielden LJ, et al. Development rates of two Xenopsylla flea species in relation to air temperature and humidity[J]. Med Vet Entomol, 2001, 15(3): 249-258. DOI: 10.1046/j.0269-283x.2001.00295.x. [7] Stenseth NC, Samia NI, Viljugrein H, et al. Plague dynamics are driven by climate variation[J]. Proc Natl Acad Sci USA, 2006, 103(35): 13110-13115. DOI: 10.1073/pnas.0602447103. [8] Herrero-Cófreces S, Flechoso MF, Rodríguez-Pastor R, et al. Patterns of flea infestation in rodents and insectivores from intensified agro-ecosystems, Northwest Spain[J]. Parasit Vectors, 2021, 14(1): 16. DOI: 10.1186/s13071-020-04492-6. [9] Sun Z, Xu L, Schmid BV, et al. Human plague system associated with rodent diversity and other environmental factors[J]. R Soc Open Sci, 2019, 6(6): 190216. DOI: 10.1098/rsos.190216. [10] Kowalski K, Bogdziewicz M, Eichert U, et al. Sex differences in flea infections among rodent hosts: is there a male bias?[J]. Parasitol Res, 2015, 114(1): 337-341. DOI: 10.1007/s00436-014-4231-z. [11] Krasnov BR, Stanko M, Matthee S, et al. Male hosts drive infracommunity structure of ectoparasites[J]. Oecologia, 2011, 166(4): 1099-1110. DOI: 10.1007/s00442-011-1950-z. [12] Yin JX, Cheng XO, Luo YY, et al. The relationship between fleas and small mammals in households of the Western Yunnan Province, China[J]. Sci Rep, 2020, 10(1): 16705. DOI: 10.1038/s41598-020-73690-0. [13] Cassin Sackett L. Does the host matter? Variable influence of host traits on parasitism rates[J]. Int J Parasitol, 2018, 48(1): 27-39. DOI: 10.1016/j.ijpara.2017.07.006. [14] Van Der Mescht L, Le Roux PC, Matthee S. Remnant fragments within an agricultural matrix enhance conditions for a rodent host and its fleas[J]. Parasitology, 2013, 140(3): 368-377. DOI: 10.1017/S0031182012001692.