-
摘要:
目的 综合分析气象因素和大气污染等环境因素对水痘发病的影响。 方法 在中国知网、万方、Web of Science、PubMed等数据库检索2021年12月31日前发表的环境因素与水痘发病关系的文献,对纳入研究的基本信息、方法和结果等进行整理分析。 结果 共纳入19项气象因素研究和3项大气污染研究。气温、相对湿度和降水的变化会造成水痘发病的增多,大气压、风速、日照等与水痘发病之间的相关性存在地区差异;PM2.5、PM10和NO2等大气污染物会增加水痘发病的风险。 结论 气象因素和大气污染等环境因素暴露会影响水痘的发病,需采取针对性的防护措施。 Abstract:Objective We aims to provide a comprehensively analysis of the impact of environmental factors, such as meteorological factors and air pollution, on the incidence of chickenpox. Methods A systematic literature search using databases including China CNKI, Wanfang, Web of Science and PubMed was conducted, foucing on relevant articles published up to December 31, 2021, that explored the association between environmental factors and chickenpox. This involved analyzing basic study information, methodologies, and outcomes. Results Nineteen studies on meteorological factors and three studies on air pollution were included in this study. It was found that changes in temperature, relative humidity and precipitation are associated with increased chickenpox indidence. Additionally, we found regional differences in the correlation between atmospheric pressure, wind speed, sunshine and chickenpox. Furthermore, air pollutants, such as PM2.5, PM10 and NO2, were identified as risk factors for chickenpox. Conclusions There are significant correlations between both meteorological factors and air pollution with the incidence of chickenpox. It is imperative to take targeted protective measures. -
Key words:
- Environmental factors /
- Meteorological factors /
- Air pollution /
- Chickenpox
-
表 1 气象因素相关研究的基本特征
Table 1. Basic characteristics of included meteorological factors studies
序号
No.参考文献
References发表年份
Year of publication国家/地区
Country/Region研究方法
Method气象因素
Meteorological factor主要结果(相关性)
Results (correlation)1 Kokaze, 等[6]
Kokaze, et al[6]2001 日本
JapanSpearman相关分析
Spearman correlation analysis气温
Temperature正相关
Positive correlation2 Wu, 等[7]
Wu, et al[7]2007 中国台湾
Taiwan, China广义估计方程
Generalized estimating equations气温
Temperature负相关
Negative correlation3 Chan, 等[8]
Chan, et al [8]2011 中国香港
Hong Kong, ChinaSpearman相关分析
Spearman correlation analysis气温、相对湿度、降水
Temperature, humidity, rainfall相对湿度、降水负相关
Negative correlation with humidity and rainfall4 金飒, 等[9]
Jin Sa, et al[9]2013 中国孝感
Xiaogan, ChinaSpearman相关分析
Spearman correlation analysis气温、相对湿度、降水
Temperature, humidity, rainfall无相关性
No correlation5 韩微笑[10]
Han Weixiao[10]2014 中国广州
Guangzhou, China分布滞后非线性模型
Distributed lag nonlinear model气温
Temperature正相关
Positive correlation6 Chan, 等[11]
Chan, et al [11]2014 中国香港
Hong Kong, China病例交叉研究
Case-crossover study气温、大气压、相对湿度、风速、降水
Temperature, atmospheric pressure, humidity, wind speed, rainfall气温、大气压正相关;相对湿度负相关
Positive correlation with temperature and atmospheric pressure; Negative correlation with humidity7 Hervás, 等[12]
Hervás, et al[12]2014 西班牙马洛卡
Mallorca, SpainSpearman相关分析
Spearman correlation analysis气温、相对湿度、降水、水汽压、大气压、风速、日照
Temperature, humidity, rainfall, vapor pressure, atmospheric pressure, wind speed, sunshine气温、水汽压负相关;风速、日照正相关
Negative correlation with temperature and vapor pressure; Positive correlation with wind speed and sunshine8 魏晓娟, 等[13]
Wei Xiaojuan,
et al[13]2014 中国临沂
Linyi, ChinaSpearman相关分析
Spearman correlation analysis气温、风速、降水、日照、大气压
Temperature, wind speed, rainfall, sunshine, atmospheric pressure气温、日照正相关;大气压负相关
Positive correlation with temperature and sunshine; Negative correlation with atmospheric pressure9 Yang, 等[14]
Yang, et al[14]2015 中国上海
Shanghai, China广义加性模型
Generalized additive model气温
Temperature负相关
Negative correlation10 Harigane, 等[15]
Harigane, et al[15]2015 日本
JapanSpearman相关分析
Spearman correlation analysis气温、相对湿度、降水
Temperature, humidity, rainfall气温、降水季节相关性
Seasonal correlation with temperature and rainfall11 Yang, 等[16]
Yang, et al[16]2016 中国济南
Jinan, China泊松回归
Poisson regression气温、大气压、相对湿度、风速、降水、日照
Temperature, atmospheric pressure, humidity, wind speed, rainfall, sunshine大气压、日照、降水正相关;气温、相对湿度负相关
Positive correlation with atmospheric pressure, sunshine and rainfall; Negative correlation with temperature and humidity12 Chen, 等[17]
Chen, et al[17]2017 中国武汉、香港
Wuhan and Hong Kong, China时间序列分析
Time-series analysis气温、相对湿度和降水
Temperature, humidity, rainfall气温、降水季节相关性
Seasonal correlation with temperature and rainfall13 王金玉, 等[18]
Wang Jinyu,
et al[18]2018 中国兰州
Lanzhou, ChinaSpearman相关分析、分布滞后非线性模型
Spearman correlation analysis, distributed lag nonlinear model气温、大气压、风速、相对湿度、降水
Temperature, atmospheric pressure, wind speed, humidity, rainfall气温、风速、降水、相对湿度负相关;大气压正相关
Negative correlation with temperature, wind speed, rainfall and humidity; Positive correlation with atmospheric pressure14 Sumi[19] 2018 丹麦、芬兰
Denmark, Finland时间序列分析
Time-series analysis气温
Temperature季节相关性
Seasonal correlation15 罗玲, 等[20]
Luo Ling, et al[20]2018 中国湖北
Hubei, ChinaSpearman相关分析
Spearman correlation analysis气温、相对湿度、降水、日照
Temperature, humidity, rainfall, sunshine季节相关性
Seasonal correlation16 叶雯婧, 等[21]
Ye Wenjing,
et al[21]2019 中国福建
Fujian, China广义线性模型
Generalized linear model气温、降水、风速、相对湿度、大气压
Temperature, rainfall, wind speed, humidity, atmospheric pressure气温、相对湿度、风速负相关;降水、大气压正相关
Negative correlation with temperature, humidity and wind speed; Positive correlation with rainfall and atmospheric pressure17 Lu, 等[22]
Lu, et al [22]2020 中国广州
Guangzhou, China分布滞后非线性模型
Distributed lag nonlinear model气温、降水、大气压、风速、相对湿度、日照
Temperature, rainfall, atmospheric pressure, wind speed, humidity, sunshine降水、大气压、日照正相关;风速负相关
Positive correlation with rainfall, atmospheric pressure and sunshine; Negative correlation with wind speed18 俞佳珂, 等[23]
Yu Jiake, et al[23]2021 中国温州
Wenzhou, China线性回归、多元回归
Linear regression, multiple regression气温、相对湿度、降水、风速
Temperature, humidity, rainfall, wind speed降水、风速负相关
Negative correlation with rainfall and wind speed19 邱海岩, 等[24]
Qiu Haiyan,
et al[24]2021 中国张家港
Zhangjiagang, ChinaSpearman相关分析、多元回归
Spearman correlation analysi, multiple regression气温、大气压、相对湿度、降水、风速、日照
Temperature, atmospheric pressure, humidity, rainfall, wind speed, sunshine季节相关性
Seasonal correlation表 2 大气污染相关研究的基本特征
Table 2. Basic characteristics of included air pollution studies
序号
No.参考文献
References发表年份
Year of publication国家/地区
Country/Region研究方法
Method空气污染因素
Air pollution factor主要结果(相关性)
Result (correlation)1 李平, 等[25]
Li Ping, et al[25]2019 中国天津
Tianjin, ChinaSpearman相关分析
Spearman correlation analysiPM2.5、PM10、SO2、NO2、CO PM2.5、PM10、NO2正相关
Positive correlation with PM2.5、PM10、NO22 Yu, 等[26]
Yu, et al [26]2020 中国上海
Shanghai, China分布滞后非线性模型
Distributed lag nonlinear modelPM10、NO2、O3、SO2、CO PM10正相关
Positive correlation with PM103 Wang, 等[27]
Wang, et al [27]2021 中国青岛
Qingdao, China分布滞后非线性模型
Distributed lag nonlinear modelPM10、PM2.5、NO2、SO2、O3 PM2.5正相关、高浓度NO2负相关、低浓度NO2正相关
Positive correlation with PM2.5, negative correlation with high concentration NO2, positive correlation with low concentration NO2 -
[1] 李意兰, 陈纯, 刘艳慧, 等. 广州市2014-2018年学校传染病突发公共卫生事件分析[J]. 中国热带医学, 2020, 20(1): 35-38. DOI: 10.13604/j.cnki.46-1064/r.2020.01.08.Li YL, Chen C, Liu YH, et al. Public health emergencies of infectious events in schools in Guangzhou, 2014-2018[J]. China Trop Med, 2020, 20(1): 35-38. DOI: 10.13604/j.cnki.46-1064/r.2020.01.08. [2] 鲍武波, 党露希, 祝明清, 等. 2011-2018年武汉市某区水痘流行特征分析[J]. 公共卫生与预防医学, 2019, 30(6): 67-70. DOI: 10.3969/j.issn.1006-2483.2019.06.017.Bao WB, Dang LX, Zhu MQ, et al. Epidemiological characteristics of varicella in a district of Wuhan, 2011-2018[J]. J Public Health Prev Med, 2019, 30(6): 67-70. DOI: 10.3969/j.issn.1006-2483.2019.06.017. [3] 董蒲梅, 王淼, 刘燕敏. 2016-2019年中国水痘流行病学特征[J]. 中国疫苗和免疫, 2020, 26(4): 403-406. DOI: 10.19914/j.cjvi.2020.04.011.Dong PM, Wang M, Liu YM. Epidemiological characteristics of varicella in China from 2016 to 2019[J]. Chin J Vaccines and Immun, 2020, 26(4): 403-406. DOI: 10.19914/j.cjvi.2020.04.011. [4] 随海田, 李锦成, 王淼, 等. 2005-2015年中国水痘流行病学特征[J]. 中国疫苗和免疫, 2019, 25(2): 155-159. DOI: 10.19914/j.cjvi.2019.02.009.Sui HT, Li JC, Wang M, et al. Varicella epidemiology in China, 2005-2015[J]. Chin J Vaccines and Immun, 2019, 25(2): 155-159. DOI: 10.19914/j.cjvi.2019.02.009. [5] 武晶晶, 张先慧, 刘晓雪, 等. 2008-2017年济南市水痘流行病学特征分析[J]. 现代预防医学, 2018, 45(19): 3488-3491, 3495.Wu JJ, Zhang XH, Liu XX, et al. Epidemiological characteristics of Varicella in Jinan, 2008-2017[J]. Modern Preventive Medicine, 2018, 45(19): 3488-3491, 3495. [6] Kokaze A, Yoshida M, Sekine Y, et al. The magnitude of variation in temperature within a year has an effect on the seasonal variations of chickenpox incidence in Japan[J]. Epidemiol Infect, 2001, 126(2): 269-277. DOI: 10.1017/s0950268801005246. [7] Wu PY, Li YC, Wu HD. Risk factors for chickenpox incidence in Taiwan from a large-scale computerized database[J]. Int J Dermatol, 2007, 46(4): 362-366. DOI: 10.1111/j.1365-4632.2006.03050.x. [8] Chan JY, Tian L, Tian L, et al. Hospitalizations for varicella in children and adolescents in a referral hospital in Hong Kong, 2004 to 2008: a time series study[J]. BMC Public Health, 2011, 11: 366. DOI: 10.1186/1471-2458-11-366. [9] 金飒, 孙国运, 邱明, 等. 湖北省孝感市2009-2012年水痘发病与环境因素的相关性分析[J]. 皮肤性病诊疗学杂志, 2013, 20(4): 288-290. DOI: 10.3969/j.issn.1674-8468.2013.04.023.Jin S, Sun GY, Qiu M, et al. The epidemiology of varicella and its correlation with environmental factors in Xiaogan City during 2009-2012[J]. J Diagn Ther J Dermatol-Venereol, 2013, 20(4): 288-290. DOI: 10.3969/j.issn.1674-8468.2013.04.023. [10] 韩微笑. 2009~2013年广州市气温对常见传染病的短期影响: 基于分布滞后非线性模型的研究[D]. 济南: 山东大学, 2017.Han WX. Short-term Impacts of Temperature on Major Infectious Disease in Guangzhou City, 2009-2013-a study based on distributed lag nonlinear models[D]. Jinan: Shandong University, 2017. [11] Chan JY, Lin HL, Tian LW. Meteorological factors and El Nino Southern Oscillation are associated with paediatric varicella infections in Hong Kong, 2004-2010[J]. Epidemiol Infect, 2014, 142(7): 1384-1392. DOI: 10.1017/S0950268813002306. [12] Hervás D, Hervás-Masip J, Nicolau A, et al. Solar radiation and water vapor pressure to forecast chickenpox epidemics[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(3): 439-446. DOI: 10.1007/s10096-014-2243-3. [13] 魏晓娟, 张晓丽. 临沂市重点传染病与气候的相关性研究及预测模型分析[J]. 社区医学杂志, 2014, 12(16): 24-27.Wei XJ, Zhang XL. Correlation study and prediction model analysis of key infectious diseases and climate in Linyi City[J]. J Communtity Med, 2014, 12(16): 24-27. [14] Yang YY, Chen RJ, Xu JH, et al. The effects of ambient temperature on outpatient visits for varicella and Herpes zoster in Shanghai, China: a time-series study[J]. J Am Acad Dermatol, 2015, 73(4): 660-665. DOI: 10.1016/j.jaad.2015.07.015. [15] Harigane K, Sumi A, Mise K, et al. The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan[J]. Epidemiol Infect, 2015, 143(12): 2666-2678. DOI: 10.1017/S095026881400363X. [16] Yang YQ, Geng XY, Liu XX, et al. Association between the incidence of varicella and meteorological conditions in Jinan, Eastern China, 2012-2014[J]. BMC Infect Dis, 2016, 16: 179. DOI: 10.1186/s12879-016-1507-1. [17] Chen BN, Sumi A, Wang L, et al. Role of meteorological conditions in reported chickenpox cases in Wuhan and Hong Kong, China[J]. BMC Infect Dis, 2017, 17(1): 538. DOI: 10.1186/s12879-017-2640-1. [18] 王金玉, 李盛, 马汉平, 等. 2008-2016年兰州市日均气温与水痘发病的关联陛研究[J]. 中华预防医学杂志, 2018, 52(8): 842-848. DOI: 10.3760/cma.j.issn.0253-9624.2018.08.013.Wang JY, Li S, Ma HP, et al. Research on the relationship between the daily mean temperature and the daily cases of varicella during 2008-2016 in Lanzhou, China[J]. Chin J Prev Med, 2018, 52(8): 842-848. DOI: 10.3760/cma.j.issn.0253-9624.2018.08.013. [19] Sumi A. Role of temperature in reported chickenpox cases in northern European countries: Denmark and Finland[J]. BMC Res Notes, 2018, 11(1): 377. DOI: 10.1186/s13104-018-3497-0. [20] 罗玲, 黎明. 湖北省水痘发病情况与气象因素的关系研究[J]. 中国全科医学, 2018, 21(9): 1114-1117. DOI: 10.3969/j.issn.1007-9572.2018.00.062.Luo L, Li M. Association between incidence of chickenpox and meteorological factors in Hubei Province, China[J]. Chin Gen Prac, 2018, 21(9): 1114-1117. DOI: 10.3969/j.issn.1007-9572.2018.00.062. [21] 叶雯婧, 陈彩粼, 杨林, 等. 福建省2006-2015年度呼吸道传染病与气候因素关联分析[J]. 医学理论与实践, 2019, 32(7): 959-962. DOI: 10.19381/j.issn.1001-7585.2019.07.009.Ye WJ, Chen CL, Yang L, et al. Analysis of the association between intestinal infectious diseases and climate factors of Fujian Province in 2006-2015[J]. J Med Theory Pract, 2019, 32(7): 959-962. DOI: 10.19381/j.issn.1001-7585.2019.07.009. [22] Lu JY, Zhang ZB, He Q, et al. Association between climatic factors and varicella incidence in Guangzhou, Southern China, 2006-2018[J]. Sci Total Environ, 2020, 728: 138777. DOI: 10.1016/j.scitotenv.2020.138777. [23] 俞佳珂, 陈小春, 钟佩佩, 等. 温州市儿童水痘流行特征与气象因素的相关性研究[J]. 国际流行病学传染病学杂志, 2021, 48(1): 38-42. DOI: 10.3760/cma.j.cn331340-20200630-00213.Yu JK, Chen XC, Zhong PP, et al. Relationship between epidemiological characteristics of pediatric varicella and meteorology in Wenzhou[J]. Inter J Epidemiol Infect Dis, 2021, 48(1): 38-42. DOI: 10.3760/cma.j.cn331340-20200630-00213. [24] 邱海岩, 沈艳, 邵海枫, 等. 张家港市水痘发病与季节气象因素相关性分析[J]. 医学动物防制, 2021, 37(5): 442-445. DOI: 10.7629/yxdwfz202105009.Qiu HY, Shen Y, Shao HF, et al. Correlation analysis on seasonal and meteorological factors and chickenpox incidence grouped by seasons in Zhangjiagang[J]. J Med Pest Control, 2021, 37(5): 442-445. DOI: 10.7629/yxdwfz202105009. [25] 李平, 孙梅青, 李彭辉, 等. 天津市武清区环境空气PM2.5与急性呼吸道感染性疾病的关联研究[J]. 实用预防医学, 2019, 26(7): 775-780. DOI: 10.3969/j.issn.1006-3110.2019.07.003.Li P, Sun MQ, Li PH, et al. Association between ambient air PM2.5 and acute respiratory tract infectious disease in Wuqing District, Tianjin[J]. Pract Prev Med, 2019, 26(7): 775-780. DOI: 10.3969/j.issn.1006-3110.2019.07.003. [26] Yu HJ, Wang YJ, Peng Q, et al. Influence of coarse particulate matter on chickenpox in Jiading District, Shanghai, 2009-2018: a distributed lag non-linear time series analysis[J]. Environ Res, 2020, 190: 110039. DOI: 10.1016/j.envres.2020.110039. [27] Wang Z, Li X, Hu P, et al. Influence of air pollutants on varicella among adults[J]. Sci Rep, 2021, 11(1): 21020. DOI: 10.1038/s41598-021-00507-z. [28] Hao JY, Yang ZY, Huang SQ, et al. Association between short-term exposure to ambient air pollution and the incidence of mumps in Wuhan, China: a time-series study[J]. Environ Res, 2019, 177: 108660. DOI: 10.1016/j.envres.2019.108660. [29] Zhang M, Zhu Y. Association between particulate matter pollution and the incidence of mumps in 31 provinces from China[J]. Environ Sci Pollut Res Int, 2021, 28(37): 51210-51216. DOI: 10.1007/s11356-021-14287-6. [30] Gu SN, Li DC, Lu BB, et al. Associations between ambient air pollution and daily incidence of pediatric hand, foot and mouth disease in Ningbo, 2014-2016: a distributed lag nonlinear model[J]. Epidemiol Infect, 2020, 148: e46. DOI: 10.1017/S0950268820000321. [31] Ji XY, Huang LY, Song J, et al. Short-term effects of meteorological factors, air pollution, and sunspot on childhood hand, foot, and mouth disease in Tianjin, China: a new time series regression, 2014-2018[J]. Environ Sci Pollut Res Int, 2020, 27(29): 37022-37035. DOI: 10.1007/s11356-020-09794-x. [32] Copat C, Cristaldi A, Fiore M, et al. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: a systematic review[J]. Environ Res, 2020, 191: 110129. DOI: 10.1016/j.envres.2020.110129. [33] Jones RM, Brosseau LM. Aerosol transmission of infectious disease[J]. J Occup Environ Med, 2015, 57(5): 501-508. DOI: 10.1097/jom.0000000000000448. [34] Jayaweera M, Perera H, Gunawardana B, et al. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy[J]. Environ Res, 2020, 188: 109819. DOI: 10.1016/j.envres.2020.109819. [35] Huang CH, Lin HC, Tsai CD, et al. The interaction effects of meteorological factors and air pollution on the development of acute coronary syndrome[J]. Sci Rep, 2017, 7: 44004. DOI: 10.1038/srep44004. [36] Niu ZC, Qi YJ, Zhao PQ, et al. Short-term effects of ambient air pollution and meteorological factors on tuberculosis in semi-arid area, northwest China: a case study in Lanzhou[J]. Environ Sci Pollut Res Int, 2021, 28(48): 69190-69199. DOI: 10.1007/s11356-021-15445-6.