Association between sarcopenia and all-cause mortality: a study based on 2011-2020 CHARLS data
-
摘要:
目的 探讨肌肉减少症与≥45岁成年人全因死亡率之间的关系。 方法 基于中国健康与养老追踪调查(China health and retirement longitudinal study, CHARLS)2011―2020年的数据,根据亚洲肌肉减少症工作组(Asian working group for sarcopenia, AWGS)2019年的标准对肌肉减少症进行诊断。利用logistic回归分析模型计算个体倾向得分(propensity score, PS),然后使用逆概率加权(inverse probability of treatment weighting, IPTW)法进行Cox比例风险回归模型分析。 结果 研究共纳入12 241名参与者:7 279名正常参与者,3 036名参与者可能患有肌肉减少症,1 926名参与者患有肌肉减少症。IPTW法加权后,与无肌肉减少症的参与者相比,可能肌肉减少症的参与者死亡风险增加了46%(HR=1.46, 95% CI: 1.19~1.77),肌肉减少症的参与者死亡风险增加了99%(HR=1.99, 95% CI: 1.43~2.76)。 结论 肌肉减少症与≥45岁成年人全因死亡率之间存在关联,肌肉减少症会增加≥45岁成年人的死亡风险。 Abstract:Objective To explore the association between sarcopenia and all-cause mortality in adults aged 45 and older. Methods Data from the China health and retirement longitudinal study (CHARLS) from 2011-2020 were utilized. Sarcopenia was diagnosed according to the 2019 standards set by the Asian Working Group for Sarcopenia (AWGS). The logistic regression model was used to calculate the individual propensity score (PS), and then the inverse probability of treatment weighting (IPTW) method was employed to perform Cox proportional hazard regression model analysis. Results The study included 12 241 participants: 7 279 participants without sarcopenia, 3 036 with probable sarcopenia, and 1 926 with sarcopenia. After IPTW adjustment, participants with possible sarcopenia had a 46% increased risk of mortality (HR=1.46, 95% CI: 1.19-1.77) compared to those without sarcopenia, and participants with sarcopenia had a 99% increased risk (HR=1.99, 95% CI: 1.43-2.76). Conclusions This research underscores the significant impact of sarcopenia on the mortality risk within the Chinese population, highlighting that sarcopenia can significantly increase the risk of death in adults aged 45 and above. -
Key words:
- Sarcopenia /
- All-cause mortality rate /
- Elderly
-
表 1 研究对象的基线特征表
Table 1. Baseline characteristics of participants
变量Variable 总人群Total ① (n=12 241) 肌肉减少症状态Sarcopenia status χ2/F值value P值value 正常组Normal group ① (n=7 279) 可能肌肉减少症组Possible sarcopenia group ①(n=3 036) 肌肉减少症组Sarcopenia group ① (n=1 926) 教育程度Education 793.413 < 0.001 文盲Illiteracy 5 783(47.24) 2 793(38.38) 1 678(55.27) 1 312(68.12) 小学Primary school 2 655(21.69) 1 630(22.39) 636(20.95) 389(20.20) 中学Middle school 2 486(20.31) 1 828(25.11) 499(16.44) 159(8.25) 高中及以上High school and above 1 317(10.76) 1 028(14.12) 223(7.35) 66(3.43) 年龄/岁Age/years 59.08±9.42 56.02±7.79 60.32±9.12 68.66±8.60 1 826.059 < 0.001 性别Gender 85.381 < 0.001 男性Male 5 823(47.57) 3 688(50.67) 1 237(40.74) 898(46.63) 女性Female 6 418(52.43) 3 591(49.33) 1 799(59.26) 1 028(53.37) 并发症Comorbidities 258.964 < 0.001 无None 7 635(62.37) 4 716(64.79) 1 573(51.81) 1 346(69.89) 1种One type 3 026(24.72) 1 687(23.18) 901(29.68) 438(22.74) 2种Two types 1 097(8.96) 614(8.43) 364(11.99) 119(6.18) >2种More than two types 483(3.95) 262(3.60) 198(6.52) 23(1.19) 婚姻状况Marital status 462.638 < 0.001 已婚/同居Married/partnered 10 663(87.11) 6 655(91.43) 2 599(85.61) 1 409(73.16) 离婚/分居/鳏居Separated/divorced/widowed 1 482(12.11) 580(7.97) 415(13.67) 487(25.28) 未婚Never married 96(0.78) 44(0.60) 22(0.72) 30(1.56) 吸烟Smoking 48.692 < 0.001 否No 7 355(60.09) 4 301(59.09) 1 959(64.53) 1 095(56.85) 既往吸烟Past 1 068(8.72) 620(8.52) 279(9.19) 169(8.77) 是Yes 3 818(31.19) 2 358(32.39) 798(26.28) 662(34.37) 居住地Residence 153.247 < 0.001 农村Rural 4 466(36.48) 2 901(39.85) 1 091(35.94) 474(24.61) 城市Urban 7 775(63.52) 4 378(60.15) 1 945(64.06) 1 452(75.39) 医疗保险Medical insurance 1.598 0.450 无No 890(7.27) 513(7.05) 226(7.44) 151(7.84) 有Yes 11 351(92.73) 6 766(92.95) 2 810(92.56) 1 775(92.16) 饮酒Drinking 55.618 < 0.001 否No 7 463(60.97) 4257(58.48) 2 012(66.27) 1 194(61.99) 是Yes 4 778(39.03) 3 022(41.52) 1 024(33.73) 732(38.01) BMI/(kg·m-2) 1 534.388 < 0.001 <24.0 7 343(59.99) 3 974(54.60) 1 451(47.79) 1 918(99.58) ≥24.0 4 898(40.01) 3 305(45.40) 1 585(52.21) 8(0.42) 注:①以人数(占比/%)或x±s表示。
Note: ① Number of people (proportion/%) or x±s.表 2 肌肉减少症与死亡关联的Cox比例风险回归模型结果
Table 2. Associations between sarcopenia and mortality risk with Cox regression models
模型Model 肌肉减少症
Sarcopenic status加权前Pre-weighted 加权后Weighted HR值value
(95% CI)P值
valueHR值value
(95% CI)P值
value模型1 Model 1 正常Normal 1.00 1.00 可能肌肉减少症Possible sarcopenia 2.21 (1.95~2.50) < 0.001 1.50 (1.24~1.82) < 0.001 肌肉减少症Sarcopenia 4.55 (4.04~5.12) < 0.001 2.29 (1.65~3.17) < 0.001 模型2 Model 2 正常Normal 1.00 1.00 可能肌肉减少症Possible sarcopenia 1.46 (1.29~1.66) < 0.001 1.46 (1.19~1.77) < 0.001 肌肉减少症Sarcopenia 1.63 (1.41~1.89) < 0.001 1.99 (1.43~2.76) < 0.001 注:模型1,未调整模型; 模型2,完全调整模型,模型中调整了年龄、性别、教育程度、婚姻状况、吸烟、饮酒、BMI、并发症、居住地、医疗保险。
Notes: Model 1, was a crude model; Model 2 was adjusted for age, gender, education, marital status, drinking, smoking, BMI, comorbidities, residence and medical insurance.表 3 并发症重新定义后的肌肉减少症与死亡关联的Cox回归分析结果
Table 3. Associations between sarcopenia and mortality risk with Cox regression models after comorbidity redefinition
模型Model 肌肉减少症
Sarcopenic status加权前Pre-weighted 加权后Weighted HR值value
(95% CI)P值
valueHR值value
(95% CI)P值
value模型1 Model 1 正常Normal 1.00 1.00 可能肌肉减少症Possible sarcopenia 2.21 (1.95 ~ 2.50) < 0.001 1.49 (1.23 ~ 1.80) < 0.001 肌肉减少症Sarcopenia 4.51 (4.00 ~ 5.08) < 0.001 1.63 (1.41 ~ 1.89) < 0.001 模型2 Model 2 正常Normal 1.00 1.00 可能肌肉减少症Possible sarcopenia 1.43 (1.26 ~ 1.63) < 0.001 1.47 (1.22 ~ 1.77) < 0.001 肌肉减少症Sarcopenia 1.57 (1.35 ~ 1.82) < 0.001 1.92 (1.37 ~ 2.69) < 0.001 注:模型1,未调整模型; 模型2,完全调整模型,模型中调整了年龄、性别、教育程度、婚姻状况、吸烟、饮酒、BMI、并发症、居住地、医疗保险。
Notes: Model 1, was a crude model; Model 2 was adjusted for age, gender, education, marital status, drinking, smoking, BMI, comorbidities, residence and medical insurance.表 4 删去第2次调查前已死亡样本后的肌肉减少症与死亡关联的Cox回归分析结果
Table 4. Associations between sarcopenia and mortality risk with Cox regression models after deletion of samples that had died before the 2nd investigation
模型Model 肌肉减少症
Sarcopenic status加权前Pre-weighted 加权后Weighted HR值value
(95% CI)P值
valueHR值value
(95% CI)P值
value模型1 Model 1 正常Normal 1.00 1.00 可能肌肉减少症Possible sarcopenia 2.22 (1.95 ~ 2.52) < 0.001 1.47 (1.20 ~ 1.80) < 0.001 肌肉减少症Sarcopenia 4.56 (4.03 ~ 5.15) < 0.001 2.39 (1.71 ~ 3.34) < 0.001 模型2 Model 2 正常Normal 1.00 1.00 可能肌肉减少症Possible sarcopenia 1.47 (1.29 ~ 1.68) < 0.001 1.42 (1.15 ~ 1.76) 0.001 肌肉减少症Sarcopenia 1.63 (1.40 ~ 1.90) < 0.001 1.95 (1.37 ~ 2.76) < 0.001 注:模型1,未调整模型; 模型2,完全调整模型,模型中调整了年龄、性别、教育程度、婚姻状况、吸烟、饮酒、BMI、并发症、居住地、医疗保险。
Notes: Model 1, was a crude model; Model 2 was adjusted for age, gender, education, marital status, drinking, smoking, BMI, comorbidities, residence and medical insurance. -
[1] Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people[J]. Age Ageing, 2010, 39(4): 412-423. DOI: 10.1093/ageing/afq034. [2] Cruz-Jentoft AJ, Sayer AA. Sarcopenia[J]. Lancet, 2019, 393(10191): 2636-2646. DOI: 10.1016/S0140-6736(19)31138-9. [3] Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia[J]. J Cachexia Sarcopeni, 2016, 7(5): 512-514. DOI: 10.1002/jcsm.12147. [4] Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis[J]. J Cachexia Sarcopeni, 2022, 13(1): 86-99. DOI: 10.1002/jcsm.12783. [5] Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults[J]. Mol Aspects Med, 2016, 50: 1-32. DOI: 10.1016/j.mam.2016.06.001. [6] Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(4): 601. DOI: 10.1093/ageing/afz046. [7] Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21(3): 300-307. e2. DOI: 10.1016/j.jamda.2019.12.012. [8] Zhao YH, Hu YS, Smith JP, et al. Cohort profile: the China health and retirement longitudinal study (CHARLS)[J]. Int J Epidemiol, 2014, 43(1): 61-68. DOI: 10.1093/ije/dys203. [9] Gao K, Cao LF, Ma WZ, et al. Association between sarcopenia and cardiovascular disease among middle-aged and older adults: findings from the China health and retirement longitudinal study[J]. EClinicalMedicine, 2022, 44: 101264. DOI: 10.1016/j.eclinm.2021.101264. [10] Lee SJ, Yang YJ, Lee DW, et al. Influence of sarcopenia on postoperative complications in patients undergoing autologous microsurgical breast reconstruction: an inverse probability of treatment weighting analysis[J]. Front Oncol, 2023, 13: 1211593. DOI: 10.3389/fonc.2023.1211593. [11] Tang TJ, Zhuo Y, Xie LL, et al. Sarcopenia index based on serum creatinine and cystatin C is associated with 3-year mortality in hospitalized older patients[J]. Sci Rep, 2020, 10(1): 1260. DOI: 10.1038/s41598-020-58304-z. [12] Sääksjärvi K, Härkänen T, Stenholm S, et al. Probable sarcopenia, obesity, and risk of all-cause mortality: a pooled analysis of 4 612 participants[J]. Gerontology, 2023, 69(6): 706-715. DOI: 10.1159/000527804. [13] Lin JA, Hou JD, Wu SY. Effect of sarcopenia on mortality in type 2 diabetes: a long-term follow-up propensity score-matched diabetes cohort study[J]. J Clin Med, 2022, 11(15): 4424. DOI: 10.3390/jcm11154424. [14] Colón-Emeric CS, McDermott CL, Lee DS, et al. Risk assessment and prevention of falls in older community-dwelling adults: a eview[J]. JAMA, 2024, 331(16): 1397-1406. DOI: 10.1001/jama.2024.1416. [15] Ganz DA, Latham NK. Fall prevention in community-dwelling older adults. Reply[J]. N Engl J Med, 2020, 382(26): 2581-2582. DOI: 10.1056/NEJMc2005662. [16] Liu DQ, Wang SJ, Liu S, et al. Frontiers in sarcopenia: advancements in diagnostics, molecular mechanisms, and therapeutic strategies[J]. Mol Aspects Med, 2024, 97: 101270. DOI: 10.1016/j.mam.2024.101270. [17] Yuan S, Larsson SC. Epidemiology of sarcopenia: prevalence, risk factors, and consequences[J]. Metabolism, 2023, 144: 155533. DOI: 10.1016/j.metabol.2023.155533. [18] Gingrich A, Volkert D, Kiesswetter E, et al. Prevalence and overlap of sarcopenia, frailty, cachexia and malnutrition in older medical inpatients[J]. BMC Geriatr, 2019, 19: 120. DOI: 10.1186/s12877-019-1115-1. [19] Beaudart C, Sanchez-Rodriguez D, Locquet M, et al. Malnutrition as a strong predictor of the onset of sarcopenia[J]. Nutrients, 2019, 11(12): 2883. DOI: 10.3390/nu11122883. [20] Ancum VMJ, Scheerman K, Jonkman NH, et al. Change in muscle strength and muscle mass in older hospitalized patients: a systematic review and meta-analysis[J]. Exp Gerontol, 2017, 92: 34-41. DOI: 10.1016/j.exger.2017.03.006. [21] Gong G, Wan WH, Zhang XH, et al. Correlation between the Charlson comorbidity index and skeletal muscle mass/physical performance in hospitalized older people potentially suffering from sarcopenia[J]. BMC Geriatr, 2019, 19(1): 367. DOI: 10.1186/s12877-019-1395-5.