Advanced Search

CN 34-1304/RISSN 1674-3679

YANG Hui-xin, ZHAO Chen-hao, LUO Jing-jing, HU Fang-fang, ZHANG Si-wen, WANG Tai-jun, ZHEN Qing. Time series analysis and spatial autocorrelation analysis of dengue data in China from 2011 to 2018[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(10): 1250-1254. doi: 10.16462/j.cnki.zhjbkz.2019.10.018
Citation: YANG Hui-xin, ZHAO Chen-hao, LUO Jing-jing, HU Fang-fang, ZHANG Si-wen, WANG Tai-jun, ZHEN Qing. Time series analysis and spatial autocorrelation analysis of dengue data in China from 2011 to 2018[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(10): 1250-1254. doi: 10.16462/j.cnki.zhjbkz.2019.10.018

Time series analysis and spatial autocorrelation analysis of dengue data in China from 2011 to 2018

doi: 10.16462/j.cnki.zhjbkz.2019.10.018
More Information
  • Corresponding author: ZHEN Qing, E-mail: zq415@sina.com
  • Received Date: 2019-05-30
  • Rev Recd Date: 2019-08-05
  • Publish Date: 2019-10-10
  •   Objective  To understand the spatial and temporal distribution characteristics of dengue fever in China from 2011 to 2018, and predict the incidence of dengue fever in China in 2019.  Methods  Based on the case data of dengue fever in China from 2011 to 2018 in the Chinese Disease Prevention and Control Information System, the trend of dengue fever was described and predicted by using the autoregressive integrated moving average model (ARIMA) with R 3.6.0 software. Based on the data of the incidence of dengue fever in the country, provinces and cities from 2011 to 2016 provided by the national scientific data sharing platform for population and health, global and local spatial autocorrelation analysis was performed using GeoDa 1.12 software to determine the dengue fever hotspots.  Results  The incidence of dengue fever was 14 302 in 2019, showing no disease outbreaks. The incidence of dengue fever in 2012(Moran's I=-0.088, P=0.037), 2013(Moran's I=-0.121, P=0.040) and 2014(Moran's I=-0.076, P=0.045) showed a global spatial negatively correlaton. In 2016(Moran's I=0.078, P=0.048), the incidence of dengue fever was positively correlated with global space. The results of local autocorrelation analysis showed that the high incidence of dengue fever was mainly in the southeast coastal areas of China.  Conclusions  In 2019, the epidemic of dengue fever in China showed no obvious fluctuation trend, and the epidemic situation showed spatial clustering distribution.
  • [1]
    Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496(7446): 504-507. DOI: 10.1038/nature12060.
    [2]
    国家卫生和计划生育委员会. 登革热诊疗指南(2014年第2版)[J]. 中药新药与临床药理, 2016, 27(1): 138-142. DOI: 10.3969/j.issn.1003-9783.2016.01.030.

    National Health and Family Planning Commission. Guidelines for the diagnosis and treatment of dengue fever (2nd edition, 2014)[J]. Tradit Chin Drug Res Clin Pharmacol, 2016, 27(1): 138-142. DOI: 10.3969/j.issn.1003-9783.2016.01.030.
    [3]
    熊益权, 陈清. 1978~2014年我国登革热的流行病学分析[J]. 南方医科大学学报, 2014, 34(12): 1822-1825. DOI: 10.3969/j.issn.1673-4254.2014.12.24.

    Xiong YQ, Chen Q. Epidemiological analysis of dengue fever in China from 1978 to 2014[J]. J South Med Univ, 2014, 34(12): 1822-1825. DOI: 10.3969/j.issn.1673-4254.2014.12.24.
    [4]
    Lai S, Zhou H, Xiong W, et al. Changing epidemiology of human brucellosis, China, 1955-2014[J]. Emerg Infect Dis, 2017, 23(2): 184-194. DOI: 10.3201/eid2302.151710.
    [5]
    Erazo C, Pereira SM, Costa Mda C, et al. Tuberculosis and living conditions in Salvador, Brazil: a spatial analysis[J]. Rev Panam Salud Publica, 2014, 36(1): 24-30. http://europepmc.org/abstract/med/25211674
    [6]
    王劲峰, 廖一兰, 刘鑫. 空间数据分析教程[M]. 北京: 科学出版社, 2010.

    Wang JF, Liao YL, Liu X. Spatial data analysis course[M]. Beijing: Science Press, 2010.
    [7]
    张冰冰, 姜祥坤, 张世英, 等. 空间自相关分析在探究疾病分布热点区域中的应用[J]. 山东大学学报(医学版), 2012, 50(5): 129-132. DOI:10.6040/j.issn.1671-7554.2012.05.029.

    Zhang BB, Jiang XK, Zhang SY, et al. Application of spatial autocorrelation analysis in exploring hotspots of disease distribution[J]. Journal of Shandong University(Natural Medicine), 2012, 50(5): 129-132. DOI: 10.6040/J.issn.1671-7554.2012.05.029.
    [8]
    Fuentes E, Fuentes M, Alarcón M, et al. Immune system dysfunction in the elderly[J]. An Acad Bras Cienc, 2017, 89(1): 285-299. DOI: 10.1590/0001-3765201720160487.
    [9]
    王芹, 殷文武, 窦丰满, 等. 2006年中国登革热疫情监测分析[J]. 疾病监测, 2009, 24(1): 22-24. DOI: 10.3784/j.issn.1003-9961.2009.01.008.

    Wang Q, Yin WW, Dou FM, et al. Monitoring and analysis of dengue fever in China in 2006[J]. Dis Surveillance, 2009, 24(1): 22-24. DOI: 10.3784/j.issn.1003-9961.2009.01.008.
    [10]
    屈志强, 黎祖秋, 汤洪洋, 等. 广西南宁市登革热媒介季节消长及其影响因素研究[J]. 中国热带医学, 2018, 18(10): 1007-1011. DOI: 10.13604/j.cnki.46-1064/r.2018.10.08.

    Qu ZQ, Li ZQ, Tang HY, et al. Seasonal fluctuation of dengue vector in Nanning, Guangxi, and its influencing factors[J]. China Tropical Medicine, 2018, 18(10): 1007-1011. DOI: 10.13604/j.cnki.46-1064/r.2018.10.08.
    [11]
    易彬樘, 张治英, 徐德忠, 等. 广东省登革热流行与气候因素变化的相关性[J]. 第四军医大学学报, 2003, 24(2): 143-146. DOI: 10.3321/j.issn:1000-2790.2003.02.014.

    Yi BT, Zhang ZY, Xu DZ, et al. Correlation between dengue fever epidemics and changes in climatic factors in Guangdong Province. [J]. J Fourth Mil Med Univ, 2003, 24(2): 143-146. DOI: 10.3321/j.issn:1000-2790.2003.02.014.
    [12]
    岳玉娟, 任东升, 刘起勇. 2005-2013年中国大陆登革热疫情时空分布[J]. 疾病监测, 2015, 30(7): 555-560. DOI: 10.3784/j.issn.1003-9961.2015.07.008.

    Yue YJ, Ren DS, Liu QY. Temporal and spatial distribution of dengue fever in mainland China from 2005 to 2013[J]. Dis Surveillance, 2015, 30(7): 555-560. DOI: 10.3784/j.issn.1003-9961.2015.07.008.
    [13]
    宁文艳, 鲁亮, 任红艳, 等. 2004-2013年间中国登革热疫情时空变化分析[J]. 地球信息科学学报, 2015, 17(5): 614-621. DOI: 10.3724/SP.J.1047.2015.00614.

    Ning WY, Lu L, Ren HY, et al. Analysis of temporal and spatial changes of dengue fever in China during 2004-2013[J]. Journal of Geo-information Science, 2015, 17(5): 614-621. DOI: 10.3724/SP.J.1047.2015.00614.
    [14]
    张红, 张恒端, 彭志强, 等. 中国2011-2015年登革热疫情分析[J]. 寄生虫与医学昆虫学报, 2017, 24(2): 118-125. DOI: 10.3969/j.issn.1005-0507.2017.02.008.

    Zhang H, Zhang HD, Peng ZQ, et al. Analysis of dengue fever in China from 2011 to 2015[J]. Acta Parasitol Med Entomol Sin, 2017, 24(2): 118-125. DOI: 10.3969/j.issn.1005-0507.2017.02.008.
    [15]
    Li Z, Yin W, Clements A, et al. Spatiotemporal analysis of indigenous and. imported dengue fever cases in Guangdong Province, China[J]. BMC Infect Dis, 2012, 12: 132. DOI: 10.1186/1471-2334-12-132.
    [16]
    樊景春, 吴海霞, 王君, 等. 广东省2006-2011年登革热时空分布特征[J]. 中国媒介生物学及控制杂志, 2013, 24(5): 389-391. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMSK201305003.htm

    Fan JC, Wu HX, Wang J, et al. Temporal and spatial distribution of dengue fever in Guangdong Province from 2006 to 2011[J]. Chin J Vector Biol & Control, 2013, 24(5): 389-391. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMSK201305003.htm
    [17]
    Bateson TF, Schwartz J. Who is sensitive to the effects of particulate. air pollution on mortality? a case-crossover analysis of effect modifiers[J]. Epidemiology, 2004, 15(2): 143-149. http://www.ncbi.nlm.nih.gov/pubmed/15127905
  • Relative Articles

  • Cited by

    Periodical cited type(20)

    1. 叶独秋,庞博文,蒋露芳,陶骏捷,张驰,李萌,吕锡宏. 上海市松江区2017-2022年白纹伊蚊分布特征及时空聚集性分析. 中国媒介生物学及控制杂志. 2024(02): 171-176 .
    2. 赵书芳. 面向传染病的可视化应用框架分析. 数字技术与应用. 2023(07): 140-143+189 .
    3. 戴安,舒云,刘平华,左吉玲,李素梅,李婷婷. 登革热流行现状及诊疗进展. 现代临床医学. 2022(01): 69-72 .
    4. 潘欢欢,李锋平,翁燕凤. 2015—2020年泉州市登革热流行态势和模型预测. 应用预防医学. 2022(01): 82-83+88 .
    5. 刘牧文,孙昼,考庆君,杨旭辉,宋姝娟,黄仁杰. 2017-2019年浙江省杭州市登革热流行特征和时空聚集性分析. 疾病监测. 2022(04): 481-486 .
    6. 陈琴英,曹信金,余静菲. 2019年湖里区登革热本地疫情防控分析. 医学理论与实践. 2022(19): 3393-3395 .
    7. 谭若云,林君芬,李傅冬,谢璐,张欣悦,马海燕. 基于疫情不同发展阶段的蚊媒传染病预警技术研究进展. 中国媒介生物学及控制杂志. 2022(06): 912-918 .
    8. 鲁影,李溪,刘文辉,李意兰,马蒙蒙,罗雷. 医疗卫生机构登革热病例监测与报告特征分析. 热带医学杂志. 2022(12): 1723-1726+1733 .
    9. 刘媛媛,刘远,罗雷,吴迪,马蒙蒙,马钰,李意兰,刘文辉,刘茂玲. 2011—2019年广州市登革热流行病学特征分析. 现代预防医学. 2021(11): 1925-1929 .
    10. 余莉,王一卉,王鹏举,袁艳,曹雁文,李绍玄,高银燕,丁国武. 2014—2018年中国大陆地区淋病流行趋势及空间分布特征. 中华疾病控制杂志. 2021(08): 885-890+954 . 本站查看
    11. 彭阳,卢千超. 2010-2018年河南省南阳市手足口病季节性差分自回归滑动平均模型预测. 疾病监测. 2021(07): 702-707 .
    12. 连宪强,杨粤,王文祥,张建波. 深圳市大鹏新区首发登革热病例的分子病毒学分析. 上海预防医学. 2021(06): 467-470 .
    13. 费小雯,张阳,李亚军,邓晓东. 伊蚊3HKT基因RNAi载体构建及口服对伊蚊的致死作用. 热带生物学报. 2021(03): 356-362 .
    14. 蒋力云,刘远,苏文哲,罗雷,曹毅敏,狄飚,吴新伟,张周斌. 广州市2010―2019年4型登革热病例流行特征及其病毒E基因. 中华疾病控制杂志. 2021(11): 1360-1364 . 本站查看
    15. 费小雯,肖洒,贺长皓,李亚军,黄晓晴,李江月,邓晓东. 伊蚊V-ATPA基因RNAi干涉载体构建及其转基因衣藻对伊蚊致死作用. 基因组学与应用生物学. 2021(Z1): 1961-1969 .
    16. 廖志武,王善青. 我国2000-2019年主要热带病的流行与防治概况. 中国热带医学. 2020(03): 193-201 .
    17. 寻鲁宁,张帆,孙纪新,曹亚景,孙祯,史卫卫,李玫,崔泽. 基于求和自回归滑动平均模型的道路交通伤害死亡趋势预测分析. 中华疾病控制杂志. 2020(04): 467-472 . 本站查看
    18. 陈丽华,周孔香,刘源,刘文清. 2019年南昌市新建区登革热发病风险评估. 宜春学院学报. 2020(03): 96-99 .
    19. 丁玲玲,杨迪,祝丽玲. 中国7~18岁中小学生2005—2014年近视率空间分布特征. 中国学校卫生. 2020(07): 1069-1071 .
    20. 李晨希,吴群红,邵瑛琦,孟祥伟,王星,李乐. 基于ESDA的湖北省新冠肺炎疫情分析. 现代预防医学. 2020(20): 3670-3675 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (672) PDF downloads(81) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return