Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 23 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
QIN Wei, GAO Min, SHEN Ying, SHI Yu-hui, WU Tao, ZHAO Ai, SUN Xin-ying. Prediction of 3-mouth glycemic control in type 2 diabetes mellitus based on machine learning algorithm[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(11): 1313-1317. doi: 10.16462/j.cnki.zhjbkz.2019.11.003
Citation: QIN Wei, GAO Min, SHEN Ying, SHI Yu-hui, WU Tao, ZHAO Ai, SUN Xin-ying. Prediction of 3-mouth glycemic control in type 2 diabetes mellitus based on machine learning algorithm[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(11): 1313-1317. doi: 10.16462/j.cnki.zhjbkz.2019.11.003

Prediction of 3-mouth glycemic control in type 2 diabetes mellitus based on machine learning algorithm

doi: 10.16462/j.cnki.zhjbkz.2019.11.003
Funds:

National Natural Science Foundation of China 71673009

More Information
  • Corresponding author: SUN Xin-ying, E-mail: xysun@bjmu.edu.cn
  • Received Date: 2019-07-17
  • Rev Recd Date: 2019-08-08
  • Publish Date: 2019-11-10
  •   Objective  To evaluate the efficiency of Logistic regression algorithm and random forest algorithm in prediction of blood glucose control in patients with type 2 diabetes mellitus (T2DM) after 3 months, and explore the influencing factors of blood glucose control.  Methods  The data was extracted from baseline survey and follow-up information of patients with T2DM in Shunyi and Tongzhou Districts. The patient's 3-month glycosylated hemoglobin which was more than 6.5% was chosen as the outcome categorical variable. The random forest algorithm and Logistic algorithm were used to establish the prediction model. The predictive efficiency was evaluated with the area under receive operating characteristic curve (AUC) and accuracy rate.  Results  Factors affecting the patient's glycemic control included baseline fasting plasma glucose(P < 0.001), duration of disease(P < 0.001), smoking(P=0.026), static activity time(P=0.006), body mass index(overweight P=0.002, obesity P=0.011), bracelet use(P=0.028), and diabetes diet(P=0.002).The Logistic regression prediction model had an AUC of 0.738, a sensitivity of 72.9%, a specificity of 68.1%, and an accuracy of 71.2%. The random forest model had an AUC of 0.756, a sensitivity of 74.5%, a specificity of 69.5%, and an accuracy of 72.8%.  Conclusions  The efficiency of random forest is better than Logistic regression model, which can be applied to the prediction of blood glucose control and assist the management of diabetic patients.
  • loading
  • [1]
    Group IDFDA. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: Estimates for the year 2013[J]. Diabetes Res Clin Pract, 2015, 109(3): 461-465. DOI: 10.1016/j.diabres.2015.05.037.
    [2]
    Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. Jama, 2017, 317(24): 2515-2523. DOI: 10.1001/jama.2017.7596.
    [3]
    Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials[J]. Lancet, 2009, 373(9677): 1765-1772. DOI: 10.1016/s0140-6736(09)60697-8.
    [4]
    中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1): 4-67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.

    Chinese Diabetes Society. Chinese guidelines for the prevention and treatment of type 2 diabetes (2017 Edition)[J]. Chin J Diabetes, 2018, 10(1): 4-67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.
    [5]
    Perry IJ, Wannamethee SG, Walker MK, et al. Prospective study of risk factors for development of non-insulin dependent diabetes in middle aged British men[J]. Bmj, 1995, 310(6979): 560-564. DOI: 10.1136/bmj.310.6979.560.
    [6]
    Joosten MM, Chiuve SE, Mukamal KJ, et al. Changes in alcohol consumption and subsequent risk of type 2 diabetes in men[J]. Diabetes, 2011, 60(1): 74-79. DOI: 10.2337/db10-1052.
    [7]
    姚静静, 王海鹏, 黄小敏, 等. 山东省2型糖尿病患者家庭支持现状及对自我管理行为的影响[J]. 中华疾病控制杂志, 2019, 23(5): 573-577. DOI: 10.16462/j.cnki.zhjbkz.2019.05.016.

    Yao JJ, Wang HP, Huang XM, et al. Family support status of type 2 diabetes mellitus and its influence on self-management behavior in Shandong Province[J]. Chin J Dis Control Prev, 2019, 23(5): 573-577. DOI: 10.16462/j.cnki.zhjbkz.2019.05.016.
    [8]
    金玲玲, 马雨杨, 叶青, 等. 规律服药的糖尿病患者体力活动水平与糖化血红蛋白控制状况的关系[J]. 中华疾病控制杂志, 2019, 23(5): 578-581, 587. DOI: 10.16462/j.cnki.zhjbkz.2019.05.017.

    Jin LL, Ma YY, Ye Q, et al. Relationship between physical activity level and hba1c control status in diabetic patients taking medication regularly[J]. Chin J Dis Control Prev, 2019, 23(5): 578-581, 587. DOI: 10.16462/j.cnki.zhjbkz.2019.05.017.
    [9]
    贺媛, 曾强, 赵小兰. 中国成人肥胖、中心性肥胖与高血压和糖尿病的相关性研究[J]. 解放军医学杂志, 2015, 40(10): 803-808. DOI: 10.11855/j.issn.0577-7402.2015.10.07.

    He Y, Zeng Q, Zhao XL. Correlation between adult obesity, central obesity, hypertension, and diabetes in China[J]. Chinese Journal of Medicine, 2015, 40(10): 803-808. DOI: 10.11855/j.issn.0577-7402.2015.10.07.
    [10]
    方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. DOI: 10.3969/j.issn.1007-3116.2011.03.006.

    Fang KN, Wu JB, Zhu JP, et al. Review of random forest methods[J]. Statistics and information BBS, 2011, 26(3): 32-38. DOI: 10.3969/j.issn.1007-3116.2011.03.006.
    [11]
    Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling[J]. J Chem Inf Comput Sci, 2003, 43(6): 1947-1958. DOI: 10.1021/ci034160g.
    [12]
    Wolpert DH, Macready WG. An efficient method to estimate bagging's generalization error[J]. Machine Learning, 1999, 35(1): 41-55. DOI: 10.1023/a:1007519102914.
    [13]
    Lima RF, Fontbonne A, Carvalho EM, et al. Factors associated with glycemic control in people with diabetes at the Family Health Strategy in Pernambuco[J]. Rev Esc Enferm USP, 2016, 50(6): 937-945. DOI: 10.1590/s0080-623420160000700009.
    [14]
    韩娜, 刘珏, 金楚瑶, 等. 2013-2017年北京市通州区34637例孕妇妊娠期糖尿病流行情况及其影响因素研究[J]. 中华疾病控制杂志, 2019, 23(2): 156-161. DOI: 10.16462/j.cnki.zhjbkz.2019.02.007.

    Han N, Liu J, Jin CY, et al. Prevalence and influencing factors of gestational diabetes in 34637 pregnant women from 2013 to 2017 in Tongzhou District, Beijing[J]. Chin J Dis Control Prev, 2019, 23(2): 156-161. DOI: 10.16462/j.cnki.zhjbkz.2019.02.007.
    [15]
    Diaz-Uriarte R, Alvarez De Andres S. Gene selection and classification of microarray data using random forest[J]. BMC Bioinformatics, 2006, 7: 3. DOI: 10.1186/1471-2105-7-3.
    [16]
    Li X, Yu S, Zhang Z, et al. Predictive modeling of hypoglycemia for clinical decision support in evaluating outpatients with diabetes mellitus[J]. Curr Med Res Opin, 2019: 1-7. DOI: 10.1080/03007995.2019.1636016.
    [17]
    Halladay JR, Dewalt DA, Wise A, et al. More extensive implementation of the chronic care model is associated with better lipid control in diabetes[J]. J Am Board Fam Med, 2014, 27(1): 34-41. DOI: 10.3122/jabfm.2014.01.130070.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(4)

    Article Metrics

    Article views (957) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return