Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 23 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
WU Liu-yu, LAN Jing-you, HUANG Dan-dan, QIU Xiao-qiang, LIU Mei-liang, LIANG Qiu-li, ZHANG Di, ZENG Xiao-yun. Preliminary study on the risk of macrosomia using Bayesian discriminant analysis based on prenatal records[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(11): 1338-1341, 1347. doi: 10.16462/j.cnki.zhjbkz.2019.11.008
Citation: WU Liu-yu, LAN Jing-you, HUANG Dan-dan, QIU Xiao-qiang, LIU Mei-liang, LIANG Qiu-li, ZHANG Di, ZENG Xiao-yun. Preliminary study on the risk of macrosomia using Bayesian discriminant analysis based on prenatal records[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(11): 1338-1341, 1347. doi: 10.16462/j.cnki.zhjbkz.2019.11.008

Preliminary study on the risk of macrosomia using Bayesian discriminant analysis based on prenatal records

doi: 10.16462/j.cnki.zhjbkz.2019.11.008
Funds:

National Nature Science Foundation of China 81460517

More Information
  • Corresponding author: ZENG Xiao-yun, E-mail: zxyxjw@21cn.com
  • Received Date: 2019-03-28
  • Rev Recd Date: 2019-07-14
  • Publish Date: 2019-11-10
  •   Objective  To explore the clinical effect of Bayesian discriminant analysis in predicting the risk of macrosomia.  Methods  169 fetal macrosomia and 169 non-macrosomia were enrolled in a 1:1 matched case-control study. Conditional Logistic regression was used to select the discriminant indexes, and the discriminant indexes were put into the Bayesian discriminant model to obtain the Bayesian discriminant function. The discriminant function was the retrospectively examined and externally tested.  Results  The results of conditional Logistic regression model indicated that mother's height, early pregnancy body mass index (BMI), gestational diabetes, gestational weeks, the height of uterine and abdominal circumference were associated with the birth of fetal macrosomia. The Bayesian discriminant function were established: Fetal macrosomia: y1=-27.802+8.420×Mother's height+8.719×early pregnancy BMI+10.485×gestational weeks+3.375×gestational diabetes+2.862×height of uterine and abdominal circumference; Non-macrosomia y2=-17.477+7.161×Mother's height+7.217×early pregnancy BMI+7.862×gestational weeks+2.036×gestational diabetes-0.085×height of uterine and abdominal circumference. Wilks' Lambda λ=0.489, P < 0.001, the Bayesian discriminant function was statistically significant. The internal and external conformity rates of the Bayesian discriminant model were all more than 80%.  Conclutions  The birth of fetal macrosomia is related to many factors. The Bayesian discriminant model in the present study is valuable to discriminate macrosomia and provide an objective reference for more accurate identification of macrosomia in the future.
  • loading
  • [1]
    Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review[J]. Ann Nutr Metab, 2015, 66(Suppl 2): 14-20. DOI: 10.1159/000371628.
    [2]
    Henriksen T. The macrosomic fetus: a challenge in current obstetrics[J]. Acta Obstet Gynecol Scand, 2008, 87(2): 134-145. DOI: 10.1080/00016340801899289.
    [3]
    Araujo JE, Peixoto AB, Zamarian AC, et al. Macrosomia[J]. Best Pract Res Clin Obstet Gynaecol, 2017, 38: 83-96. DOI: 10.1016/j.bpobgyn.2016.08.003.
    [4]
    叶旭萍, 杨岳州, 李笑天. 临产前预测巨大儿简易模型[J]. 现代妇产科进展, 2014, 23(3): 195-197. DOI: 10.13283/j.cnki.xdfckjz.2014.03.009.

    Ye XP, Yang YZ, Li XT. A simple model to predict macrosomia[J]. Prog Obstet Gynecol, 2014, 23(3): 195-197. DOI: 10.13283/j.cnki.xdfckjz.2014.03.009.
    [5]
    Esakoff TF, Cheng YW, Sparks TN, et al. The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus[J]. Am J Obstet Gynecol, 2009, 200(6): 671-672. DOI: 10.1016/j.ajog.2009.02.035.
    [6]
    Said AS, Manji KP. Risk factors and outcomes of fetal macrosomia in a tertiary centre in Tanzania: a case-control study[J]. BMC Pregnancy Childbirth, 2016, 16: 243. DOI: 10.1186/s12884-016-1044-3.
    [7]
    窦海达, 张小凤, 柏如海, 等. 巨大儿发生状况及其影响因素分析[J]. 西安交通大学学报(医学版), 2017, 38(6): 888-891. DOI: 10.7652/jdyxb201706020.

    Dou HD, Zhang XF, Bai RH, et al. The occurrence of macrosomia and it's influencing factors[J]. Journal of Xi'an Jiaotong University (Medical sciences), 2017, 38(6): 888-891. DOI: 10.7652/jdyxb201706020.
    [8]
    Kadji C, Cannie MM, Carlin A, et al. Protocol for the prospective observational clinical study: estimation of fetal weight by MRI to PREdict neonatal MACROsomia (PREMACRO study) and small-for-gestational age neonates[J]. BMJ Open, 2019, 9(3): e27160. DOI: 10.1136/bmjopen-2018-027160.
    [9]
    Nahum GG, Stanislaw H. Ultrasonographic prediction of term birth weight: How accurate is it?[J]. Am J Obstet Gynecol, 2003, 188(2): 566-574. DOI: 10.1067/mob.2003.155.
    [10]
    韦雯雯, 杨媛媛. 超声测量胎儿生长参数预测胎儿体重与临床公式法的比较[J]. 安徽医药, 2014, 18(3): 489-490. DOI: 10.3969/j.issn.1009-6469.2014.03.026.

    Wei WW, Yang YY. Comparison of calculation way and formula method by ultrasonography to predict the birth weight of full-term fetus and fetal macrosomia[J]. Anhui Medical and Pharmaceutical Journal, 2014, 18(3): 489-490. DOI: 10.3969/j.issn.1009-6469.2014.03.026.
    [11]
    Kuhle S, Maguire B, Zhang H, et al. Comparison of logistic regression with machine learning methods for the prediction of fetal growth abnormalities: a retrospective cohort study[J]. BMC Pregnancy Childbirth, 2018, 18(1): 333. DOI: 10.1186/s12884-018-1971-2.
    [12]
    Vitner D, Bleicher I, Kadour-Peero E, et al. Does prenatal identification of fetal macrosomia change management and outcome?[J]. Arch Gynecol Obstet, 2018. DOI: 10.1007/s00404-018-5003-2.
    [13]
    American College of Obstetricians and Gynecologists' Committee on Practice Bulletins-Obstetrics. Practice bulletin No.173: fetal macrosomia[J]. Obstet Gynecol, 2016, 128(5): e195-e209. DOI: 10.1097/AOG.0000000000001767.
    [14]
    Fox NS, Bhavsar V, Saltzman DH, et al. Influence of maternal body mass index on the clinical estimation of fetal weight in term pregnancies[J]. Obstet Gynecol, 2009, 113(3): 641-645. DOI: 10.1097/AOG.0b013e3181998eef.
    [15]
    Hadlock FP, Harrist RB, Carpenter RJ, et al. Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements[J]. Radiology, 1984, 150(2): 535-540. DOI: 10.1148/radiology.150.2.6691115.
    [16]
    Liao K, Tang L, Peng C, et al. A modified model can improve the accuracy of foetal weight estimation by magnetic resonance imaging[J]. Eur J Radiol, 2019, 110: 242-248. DOI: 10.1016/j.ejrad.2018.12.009.
    [17]
    Dudley NJ. A systematic review of the ultrasound estimation of fetal weight[J]. Ultrasound Obstet Gynecol, 2005, 25(1): 80-89. DOI: 10.1002/uog.1751.
    [18]
    Heer IM, Kumper C, Vogtle N, et al. Analysis of factors influencing the ultrasonic fetal weight estimation[J]. Fetal Diagn Ther, 2008, 23(3): 204-210. DOI: 10.1159/000116742.
    [19]
    Lanowski JS, Lanowski G, Schippert C, et al. Ultrasound versus clinical examination to estimate fetal weight at term[J]. Geburtshilfe Frauenheilkd, 2017, 77(3): 276-283. DOI: 10.1055/s-0043-102406.
    [20]
    李佐静, 李清, 凌俊红, 等. Bayes判别分析在基于儿茶酚胺的阿尔茨海默病预测研究中的应用[J]. 计算机与应用化学, 2013, 30(5): 447-450. DOI: 10.11719/com.app.chem20130501.

    Li ZJ, Li Q, Ling JH, et al. Diagnosis of Alzheimer's diseas and its prediction basing on Bayes discriminant analysis method using Catetholamines data[J]. Computers and Applied chemisty, 2013, 30(5): 447-450. DOI:10.11719/com.app.chem 20130501.
    [21]
    O'Malley AJ, Zou KH. Bayesian multivariate hierarchical transformation models for ROC analysis[J]. Stat Med, 2006, 25(3): 459-479. DOI: 10.1002/sim.2187.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(4)

    Article Metrics

    Article views (428) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return