Citation: | XU Lu, WANG Sheng-feng, ZHAN Si-yan. Research progress of clinical trials with artificial intelligence intervention[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(1): 12-15, 36. doi: 10.16462/j.cnki.zhjbkz.2021.01.003 |
[1] |
He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019, 25(1):30-36. DOI: 10.1038/s41591-018-0307-0.
|
[2] |
Rivera SC, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension[J]. BMJ, 2020, 370:m3210. DOI: 10.1136/bmj.m3210.
|
[3] |
Caballero RE, García SG, Rigl AM, et al. A web-based clinical decision support system for gestational diabetes: Automatic diet prescription and detection of insulin needs[J]. Int J Med Inform, 2017, 102:35-49. DOI: 10.1016/j.ijmedinf.2017.02.014.
|
[4] |
Kim TWB, Gay N, Khemka A, et al. Internet-based exercise therapy using algorithms for conservative treatment of anterior knee pain: a pragmatic randomized controlled trial[J]. JMIR Rehabil Assist Technol, 2016, 3(2):e12. DOI: 10.2196/rehab.5148.
|
[5] |
Labovitz DL, Shafner L, Reyes GM, et al. Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy[J]. Stroke, 2017, 48(5):1416-1419. DOI: 10.1161/STROKEAHA.116.016281.
|
[6] |
Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[J]. EClinical Medicine, 2019, 9:52-59. DOI: 10.1016/j.eclinm.2019.03.001.
|
[7] |
Voss C, Schwartz J, Daniels J, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial[J]. JAMA Pediatr, 2019, 173(5):446-454. DOI: 10.1001/jamapediatrics.2019.0285.
|
[8] |
Mathew B, Norris D, Hendry D, et al. Artificial intelligence in the diagnosis of low-back pain and sciatica[J]. Spine, 1988, 13(2):168-172. DOI: 10.1097/00007632-198802000-00007.
|
[9] |
Pavel AM, Rennie JM, De Vries LS, et al. A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial[J]. Lancet Child Adolesc Health, 2020, 4(10):740-749. DOI: 10.1016/s2352-4642(20)30239-x.
|
[10] |
Wang P, Liu X, Berzin TM, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study[J]. Lancet Gastroenterol Hepatol, 2020, 5(4):343-351. DOI: 10.1016/s2468-1253(19)30411-x.
|
[11] |
Wijnberge M, Geerts BF, Hol L, et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial[J]. JAMA, 2020, 323(11):1052-1060. DOI: 10.1001/jama.2020.0592.
|
[12] |
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study[J]. Gut, 2019, 68(10):1813-1819. DOI: 10.1136/gutjnl-2018-317500.
|
[13] |
Persell SD, Peprah YA, Lipiszko D, et al. Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: a randomized clinical trial[J]. JAMA Netw Open, 2020, 3(3):e200255. DOI: 10.1001/jamanetworkopen.2020.0255.
|
[14] |
Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials[J]. Ann Intern Med, 2013, 158(3):200-207. DOI: 10.7326/0003-4819-158-3-201302050-00583.
|
[15] |
Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension[J]. BMJ, 2020, 370:m3164. DOI: 10.1136/bmj.m3164.
|
[16] |
Chan AW, Tetzlaff JM, Gøtzsche PC, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials[J]. BMJ, 2013, 346:e7586. DOI: 10.1136/bmj.e7586.
|
[17] |
Washington P, Voss C, Kline A, et al. SuperpowerGlass: a wearable aid for the at-home therapy of children with autism[J]. Proc ACM Interact Mob Wearable Ubiquitous Technol, 2017, 1(3):112. DOI: 10.1145/3130977.
|
[18] |
Daniels J, Schwartz JN, Voss C, et al. Exploratory study examining the at-home feasibility of a wearable tool for social-affective learning in children with autism[J]. NPJ Digit Med, 2018, 1:32. DOI: 10.1038/s41746-018-0035-3.
|