Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 27 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
CHE Beibei, ZHENG Xubin, XU Houqin, ZHU Liping, LI Bingying, XU Biao. Impacts of implementing congenital heart disease screening program among infants on the disease report rate in Shanghai: an interrupted time series analysis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(4): 413-418. doi: 10.16462/j.cnki.zhjbkz.2023.04.007
Citation: CHE Beibei, ZHENG Xubin, XU Houqin, ZHU Liping, LI Bingying, XU Biao. Impacts of implementing congenital heart disease screening program among infants on the disease report rate in Shanghai: an interrupted time series analysis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(4): 413-418. doi: 10.16462/j.cnki.zhjbkz.2023.04.007

Impacts of implementing congenital heart disease screening program among infants on the disease report rate in Shanghai: an interrupted time series analysis

doi: 10.16462/j.cnki.zhjbkz.2023.04.007
CHE Beibei and ZHENG Xubin contributed equally to this article
Funds:

Three-year Action Plan for Shanghai Public Health System Construction (2020-2022) Optimization of Linked MCH Service Model Under the Full Life-course Health Management GWV-9.4

Key Disciplines Project under the Shanghai New Three-year Action Plan for Public Health GWV-10.1-XK16

Special Planning for Capacity Building of Women's Health Services in Shanghai (2016-2020), Shanghai Prenatal Diagnosis Management Platform Construction Project Shanghai Health Planning for Women and Children [2018] No. 6

More Information
  • Corresponding author: XU Biao, E-mail: bxu@shmu.edu.cn
  • Received Date: 2022-08-08
  • Rev Recd Date: 2022-10-27
  • Available Online: 2023-04-28
  • Publish Date: 2023-04-10
  •   Objective  To evaluate the changes in overall and subtype-specific report rate of congenital heart disease (CHD) among infants before and after implementing a municipal screening program in Shanghai.  Methods  Based on the Shanghai Birth Defects Surveillance System, all CHD infants diagnosed within 42 days after birth were included in this study from January 2014 to December 2017. Pre- (January 2014 to May 2016) and post-program (June 2016 to December 2017) phases were defined according to the date of implementing the CHD screening program. The interrupted time series (ITS) analysis was used to evaluate the impact of the screening program on overall and subtype-specific CHD report rates.  Results  In total, there were 849 981 live births in Shanghai between 2014 and 2017, of whom 3 571 were confirmed with CHD. In the pre-program phase, the average monthly report rate of CHD was 42.97 (95% CI: 41.19-44.82) per 10 000 live births, while decreasing to 40.60 per 10 000 live births (95% CI: 38.51-42.78) in post-program-phase. ITS analysis found that both the pre and post-phase presented an increasing trend of CHD report rate (RR=1.013, 95% CI: 1.005-1.021); While the overall reported rate of CHD was negatively associated with the screening implementation (RR=0.706, 95% CI: 0.573-0.869). Regarding specific clinical subtypes, the report rates of patent foramen ovale (RR=0.646, 95% CI: 0.461-0.904) and other CHD subtypes (RR=0.458, 95% CI: 0.296-0.708) were significantly decreased along with the CHD screening. However, the proportion of infants with critical CHD increased significantly among total reported cases after implementing the screening program (pre-program phase vs. post-program phase: 6.77% vs. 10.64%, P < 0.001).  Conclusions  After the CHD screening program's implementation, the observed decrease in hospital-based CHD report rate among infants within 42 days of birth was mainly attributed to the deceased report of mild and self-curable CHD. By contrast, the proportion of infants with critical CHD, i.e., those who should be critically concerned and timely intervened, was increasing. Findings from this study suggest that the CHD screening program in infants has established a standardized diagnostic procedure and brought about better screening efficiency and optimal use of health resources in Shanghai.
  • loading
  • [1]
    Collaborators GCHD. Global, regional, and national burden of congenital heart disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Child Adolesc Health, 2020, 4(3): 185-200. DOI: 10.1016/S2352-4642(19)30402-X.
    [2]
    Kumar P. Universal pulse oximetry screening for early detection of critical congenital heart disease[J]. Clin Med Insights Pediatr, 2016, 10: 35-41. DOI: 10.4137/CMPed.S33086.
    [3]
    Liu YJ, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies[J]. Int J Epidemiol, 2019, 48(2): 455-463. DOI: 10.1093/ije/dyz009.
    [4]
    van der Bom T, Zomer AC, Zwinderman AH, et al. The changing epidemiology of congenital heart disease[J]. Nat Rev Cardiol, 2011, 8(1): 50-60. DOI: 10.1038/nrcardio.2010.166.
    [5]
    Zhang LH, Liu B, Li HM, et al. Epidemiology of congenital heart disease in Jinan, China from 2005 to 2020: a time trend analysis[J]. Front Cardiovasc Med, 2022, 9: 815137. DOI: 10.3389/fcvm.2022.815137.
    [6]
    Peterson C, Ailes E, Riehle-Colarusso T, et al. Late detection of critical congenital heart disease among US infants: estimation of the potential impact of proposed universal screening using pulse oximetry[J]. JAMA Pediatr, 2014, 168(4): 361-370. DOI: 10.1001/jamapediatrics.2013.4779.
    [7]
    黄国英. 我国开展新生儿先天性心脏病筛查的重要性[J]. 中华儿科杂志, 2017, 55(4): 241-243. DOI: 10.3760/cma.j.issn.0578-1310.2017.04.001.

    Huang GY. The Importance of Congenital Heart Disease Screening In Neonates In China[J]. Chin J Pediatr, 2017, 55(4): 241-243. DOI: 10.3760/cma.j.issn.0578-1310.2017.04.001.
    [8]
    Biglan A, Ary D, Wagenaar AC. The value of interrupted time-series experiments for community intervention research[J]. Prev Sci, 2000, 1(1): 31-49. DOI: 10.1023/a:1010024016308.
    [9]
    Ewer AK, Middleton LJ, Furmston AT, et al. Pulse oximetry screening for congenital heart defects in newborn infants (PulseOx): a test accuracy study[J]. Lancet, 2011, 378(9793): 785-794. DOI: 10.1016/S0140-6736(11)60753-8.
    [10]
    Dong YY, Zhang YT, Tong SL, et al. Analysis of the seasonal trend of congenital heart defects[J]. J Pediatr, 2019, 207: 29-33. DOI: 10.1016/j.jpeds.2018.12.024.
    [11]
    Zhao QM, Liu F, Wu L, et al. Prevalence of Congenital Heart Disease at Live Birth in China[J]. J Pediatr, 2019, 204: 53-58. DOI: 10.1016/j.jpeds.2018.08.040.
    [12]
    张志力, 胡先明, 范惠霞, 等. 2012—2017年山西省围生儿出生缺陷监测结果和流行病学分析[J]. 中国全科医学, 2020, 23(10): 1298-1304. DOI: 10.12114/j.issn.1007-9572.2019.00.708.

    Zhang ZL, Hu XM, Fan HX, et al. Epidemiological Analysis of the Surveillance Data of Birth Defects among Perinatal Infants in Shanxi Province, 2012-2017[J]. Chin Gen Prac, 2020, 23(10): 1298-1304. DOI: 10.12114/j.issn.1007-9572.2019.00.708.
    [13]
    黄纬美. 2015年~2016年福建省出生缺陷情况分析[D]. 福州: 福建医科大学, 2017.

    Huang WM. Analysis of birth defects in Fujian Province from 2015 to 2016[D]. Fuzhou: Fujian Medical University, 2017.
    [14]
    Dolk H, Loane M, Garne E, et al. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005[J]. Circulation, 2011, 123(8): 841-849. DOI: 10.1161/circulationaha.110.958405.
    [15]
    Prevention CFDC. Critical Congenital Heart Defects[EB/OL](2022-01-24)[2022-07-20]. https://www.cdc.gov/ncbddd/heartdefects/cchd-facts.html.
    [16]
    Oyen N, Poulsen G, Boyd HA, et al. National time trends in congenital heart defects, Denmark, 1977-2005[J]. Am Heart J, 2009, 157(3): 467-473. el. DOI: 10.1016/j.ahj.2008.10.017.
    [17]
    Vrijheid M, Martinez D, Manzanares S, et al. Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis[J]. Environ Health Perspect, 2011, 119(5): 598-606. DOI: 10.1289/ehp.1002946.
    [18]
    Du YX, Xu XH, Chu M, et al. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence[J]. J Thorac Dis, 2016, 8(1): E8-E19. DOI: 10.3978/j.issn.2072-1439.2015.11.37.
    [19]
    Zhao QM, Ma XJ, Ge XL, et al. Pulse oximetry with clinical assessment to screen for congenital heart disease in neonates in China: a prospective study[J]. Lancet, 2014, 384(9945): 747-754. DOI: 10.1016/S0140-6736(14)60198-7.
    [20]
    Plana MN, Zamora J, Suresh G, et al. Pulse oximetry screening for critical congenital heart defects[J]. Cochrane Database Syst Rev, 2018, 3(3): D11912. DOI: 10.1002/14651858.CD011912.pub2.
    [21]
    Hu XJ, Ma XJ, Zhao QM, et al. Pulse oximetry and auscultation for congenital heart disease detection[J]. Pediatrics, 2017, 140(4): e20171154. DOI: 10.1542/peds.2017-1154.
    [22]
    韩霞, 杨文红, 喻茜, 等. 经皮血氧饱和度检测结合临床评估筛查新生儿先天性心脏病的可行性研究[J]. 中国儿童保健杂志, 2018, 26(3): 251-253. DOI: 10.11852/zgetbjzz2018-26-03-06.

    Han X, Yang WH, Yu Q, et al. Feasibility study of screening for congenital heart disease in neonates by using pulse oximetry combined with clinical assessment[J]. Chin J Child Heal Care, 2018, 26(3): 251-253. DOI: 10.11852/zgetbjzz2018-26-03-06.
    [23]
    Hoffman JI. The global burden of congenital heart disease[J]. Cardiovasc J Afr, 2013, 24(4): 141-145. DOI: 10.5830/CVJA-2013-028.
    [24]
    Yildirim A, Aydin A, Demir T, et al. Echocardiographic follow-up of patent foramen ovale and the factors affecting spontaneous closure[J]. Acta Cardiol Sin, 2016, 32(6): 731-737. DOI: 10.6515/acs20160205a.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (293) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return