Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 27 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
XU Qiuyi, LEI Yuxuan, WEN Simin, SHU Yuelong. Research progress on cell-mediated immunity post influenza vaccination[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(4): 476-481. doi: 10.16462/j.cnki.zhjbkz.2023.04.018
Citation: XU Qiuyi, LEI Yuxuan, WEN Simin, SHU Yuelong. Research progress on cell-mediated immunity post influenza vaccination[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(4): 476-481. doi: 10.16462/j.cnki.zhjbkz.2023.04.018

Research progress on cell-mediated immunity post influenza vaccination

doi: 10.16462/j.cnki.zhjbkz.2023.04.018
Funds:

National Key Research and Development Program of China 2021YFC2300100

Guangdong Basic and Applied Basic Research Foundation 2023A1515011767

More Information
  • Corresponding author: SHU Yuelong, E-mail: shuylong@mail.sysu.edu.cn
  • Received Date: 2023-01-19
  • Rev Recd Date: 2023-02-06
  • Available Online: 2023-04-28
  • Publish Date: 2023-04-10
  • Influenza is a major threat to human health, and annual vaccination is an important way to prevent influenza epidemics and reduce disease burden. Current influenza vaccines mainly induce humoral immune responses, and the evaluation for immunogenicity is mainly based on antibody levels, but the induction and evaluation of cell-mediated immunity are scarce, which is an important part of the immune response. In this review, we summarized the results of the cell-mediated immunity induced by vaccines in development, to provide a reference for improving the immunogenicity of influenza vaccines and for the evaluation methods of cell-mediated immunity.
  • loading
  • [1]
    Krammer F, Smith GJD, Fouchier RAM, et al. Influenza[J]. Nat Rev Dis Primers, 2018, 4: 3. DOI: 10.1038/s41572-018-0002-y.
    [2]
    Gamblin SJ, Vachieri SG, Xiong XL, et al. Hemagglutinin structure and activities[J]. Cold Spring Harb Perspect Med, 2021, 11(10): a038638. DOI: 10.1101/cshperspect.a038638.
    [3]
    Janssens Y, Joye J, Waerlop G, et al. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation[J]. Front Immunol, 2022, 13: 959379. DOI: 10.3389/fimmu.2022.959379.
    [4]
    Lafond KE, Porter RM, Whaley MJ, et al. Global burden of influenza-associated lower respiratory tract infections and hospitalizations among adults: a systematic review and meta-analysis[J]. PLoS Med, 2021, 18(3): e1003550. DOI: 10.1371/journal.pmed.1003550.
    [5]
    Li L, Liu Y, Wu P, et al. Influenza-associated excess respiratory mortality in China, 2010-15: a population-based study[J]. Lancet Public Health, 2019, 4(9): e473-e481. DOI: 10.1016/S2468-2667(19)30163-X.
    [6]
    Uyeki TM, Hui DS, Zambon M, et al. Influenza[J]. Lancet, 2022, 400(10353): 693-706. DOI: 10.1016/S0140-6736(22)00982-5.
    [7]
    Imran M, Ortiz JR, Mclean HQ, et al. Relative effectiveness of cell-based versus egg-based quadrivalent influenza vaccines in adults during the 2019-2020 influenza season in the United States[J]. Open Forum Infect Dis, 2022, 9(10): ofac532. DOI: 10.1093/ofid/ofac532.
    [8]
    Boikos C, Mcgovern I, Ortiz JR, et al. Relative vaccine effectiveness of adjuvanted trivalent influenza vaccine over three consecutive influenza seasons in the United States[J]. Vaccines, 2022, 10(9): 1456. DOI: 10.3390/vaccines10091456.
    [9]
    Liu GX, Liu ZX, Zhao HY, et al. The effectiveness of influenza vaccine among elderly Chinese: a regression discontinuity design based on Yinzhou regional health information platform[J]. Hum Vaccin Immunother, 2022, 18(6): 2115751. DOI: 10.1080/21645515.2022.2115751.
    [10]
    Boikos C, Mcgovern I, Molrine D, et al. Review of analyses estimating relative vaccine effectiveness of cell-based quadrivalent influenza vaccine in three consecutive US influenza seasons[J]. Vaccines, 2022, 10(6): 896. DOI: 10.3390/vaccines10060896.
    [11]
    Rondy M, El Omeiri N, Thompson MG, et al. Effectiveness of influenza vaccines in preventing severe influenza illness among adults: a systematic review and meta-analysis of test-negative design case-control studies[J]. J Infect, 2017, 75(5): 381-394. DOI: 10.1016/j.jinf.2017.09.010.
    [12]
    Imran M, Ortiz JR, Mclean HQ, et al. Relative effectiveness of cell-based versus egg-based quadrivalent influenza vaccines in children and adolescents in the United States during the 2019-2020 influenza season[J]. Pediatr Infect Dis J, 2022, 41(9): 769-774. DOI: 10.1097/INF.0000000000003620.
    [13]
    Nachbagauer R, Choi A, Izikson R, et al. Age dependence and isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humans[J]. mBio, 2016, 7(1): e01996-e01915. DOI: 10.1128/mBio.01996-15.
    [14]
    Keshavarz M, Mirzaei H, Salemi M, et al. Influenza vaccine: where are we and where do we go?[J]. Rev Med Virol, 2019, 29(1): e2014. DOI: 10.1002/rmv.2014.
    [15]
    Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses[J]. Cell Host Microbe, 2023, 31(1): 146-157. DOI: 10.1016/j.chom.2022.11.016.
    [16]
    Morens DM, Taubenberger JK. Making universal influenza vaccines: lessons from the 1918 pandemic[J]. J Infect Dis, 2019, 219(Suppl_1): S5-S13. DOI: 10.1093/infdis/jiy728.
    [17]
    Erbelding EJ, Post DJ, Stemmy EJ, et al. A universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseases[J]. J Infect Dis, 2018, 218(3): 347-354. DOI: 10.1093/infdis/jiy103.
    [18]
    Hobson D, Curry RL, Beare AS, et al. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses[J]. J Hyg (Lond), 1972, 70(4): 767-777. DOI: 10.1017/s0022172400022610.
    [19]
    Becker T, Elbahesh H, Reperant LA, et al. Influenza vaccines: successes and continuing challenges[J]. J Infect Dis, 2021, 224(12 Suppl 2): S405-S419. DOI: 10.1093/infdis/jiab269.
    [20]
    Ohmit SE, Petrie JG, Cross RT, et al. Influenza hemagglutination-inhibition antibody titer asa correlate of vaccine-induced protection[J]. J Infect Dis, 2011, 204(12): 1879-1885. DOI: 10.1093/infdis/jir661.
    [21]
    Black S, Nicolay U, Vesikari T, et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children[J]. Pediatr Infect Dis J, 2011, 30(12): 1081-1085. DOI: 10.1097/INF.0b013e3182367662.
    [22]
    Wijnans L, Voordouw B. A review of the changes to the licensing of influenza vaccines in Europe[J]. Influ Other Respir Viruses, 2016, 10(1): 2-8. DOI: 10.1111/irv.12351.
    [23]
    Puig-Barberà J, Tamames-Gómez S, Plans-Rubio P, et al. Relative effectiveness of cell-cultured versus egg-based seasonal influenza vaccines in preventing influenza-related outcomes in subjects 18 years old or older: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2022, 19(2): 818. DOI: 10.3390/ijerph19020818.
    [24]
    Kim YH, Hong KJ, Kim H, et al. Influenza vaccines: past, present, and future[J]. Rev Med Virol, 2022, 32(1): e2243. DOI: 10.1002/rmv.2243.
    [25]
    Forrest BD, Pride MW, Dunning AJ, et al. Correlation of cellular immune responses with protection against culture-confirmed influenza virus in young children[J]. Clin Vaccine Immunol, 2008, 15(7): 1042-1053. DOI: 10.1128/CVI.00397-07.
    [26]
    Lillie PJ, Berthoud TK, Powell TJ, et al. Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans[J]. Clin Infect Dis, 2012, 55(1): 19-25. DOI: 10.1093/cid/cis327.
    [27]
    Joffre OP, Segura E, Savina A, et al. Cross-presentation by dendritic cells[J]. Nat Rev Immunol, 2012, 12(8): 557-569. DOI: 10.1038/nri3254.
    [28]
    Nguyen AT, Lau HMP, Sloane H, et al. Homologous peptides derived from influenza A, B and C viruses induce variable CD8(+) T cell responses with cross-reactive potential[J]. Clin Transl Immunology, 2022, 11(10): e1422. DOI: 10.1002/cti2.1422.
    [29]
    Lee LY, Ha Do LA, Simmons C, et al. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals[J]. J Clin Invest, 2008, 118(10): 3478-3490. DOI: 10.1172/JCI32460.
    [30]
    Joe PT, Christopoulou I, van Hoecke L, et al. Intranodal administration of mRNA encoding nucleoprotein provides cross-strain immunity against influenza in mice[J]. J Transl Med, 2019, 17(1): 242. DOI: 10.1186/s12967-019-1991-3.
    [31]
    Flynn JA, Weber T, Cejas PJ, et al. Characterization of humoral and cell-mediated immunity induced by mRNA vaccines expressing influenza hemagglutinin stem and nucleoprotein in mice and nonhuman primates[J]. Vaccine, 2022, 40(32): 4412-4423. DOI: 10.1016/j.vaccine.2022.03.063.
    [32]
    Li YB, Li ZF, Zhao YW, et al. Potentiation of recombinant NP and M1-induced cellular immune responses and protection by physical radiofrequency adjuvant[J]. Vaccines (Basel), 2021, 9(12): 1382. DOI: 10.3390/vaccines9121382.
    [33]
    Nelson SA, Sant AJ. Potentiating lung mucosal immunity through intranasal vaccination[J]. Front Immunol, 2021, 12: 808527. DOI: 10.3389/fimmu.2021.808527.
    [34]
    Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing[J]. Annu Rev Immunol, 2013, 31: 443-473. DOI: 10.1146/annurev-immunol-032712-095910.
    [35]
    Yang L, Li W, Kirberger M, et al. Design of nanomaterial based systems for novel vaccine development[J]. Biomater Sci, 2016, 4(5): 785-802. DOI: 10.1039/c5bm00507h.
    [36]
    Luckheeram RV, Zhou R, Verma AD, et al. CD4+T cells: differentiation and functions[J]. Clin Dev Immunol, 2012, 2012: 925135. DOI: 10.1155/2012/925135.
    [37]
    Dong CH, Wang Y, Zhu WD, et al. Polycationic HA/CpG nanoparticles induce cross-protective influenza immunity in mice[J]. ACS Appl Mater Interfaces, 2022, 14(5): 6331-6342. DOI: 10.1021/acsami.1c19192.
    [38]
    Von Holle TA, Moody MA. Influenza and antibody-dependent cellular cytotoxicity[J]. Front Immunol, 2019, 10: 1457. DOI: 10.3389/fimmu.2019.01457.
    [39]
    Vanderven HA, Ana-Sosa-Batiz F, Jegaskanda S, et al. What lies beneath: antibody dependent natural killer cell activation by antibodies to internal influenza virus proteins[J]. EBioMedicine, 2016, 8: 277-290. DOI: 10.1016/j.ebiom.2016.04.029.
    [40]
    Picard E, Armstrong S, Andrew MK, et al. Markers of systemic inflammation are positively associated with influenza vaccine antibody responses with a possible role for ILT2(+)CD57(+) NK-cells[J]. Immun Ageing, 2022, 19(1): 26. DOI: 10.1186/s12979-022-00284-x.
    [41]
    Kim M, Cheong Y, Lee J, et al. A host-restricted self-attenuated influenza virus provides broad pan-influenza a protection in a mouse model[J]. Front Immunol, 2021, 12: 779223. DOI: 10.3389/fimmu.2021.779223.
    [42]
    Mellman I, Koch T, Healey G, et al. Structure and function of Fc receptors on macrophages and lymphocytes[J]. J Cell Sci Suppl, 1988, 9: 45-65. DOI: 10.1242/jcs.1988.supplement_9.3.
    [43]
    Mcnab F, Mayer-Barber K, Sher A, et al. Type I interferons in infectious disease[J]. Nat Rev Immunol, 2015, 15(2): 87-103. DOI: 10.1038/nri3787.
    [44]
    Desheva Y, Leontieva G, Kramskaya T, et al. Live influenza vaccine provides early protection against homologous and heterologous influenza and may prevent post-influenza pneumococcal infections in mice[J]. Microorganisms, 2022, 10(6): 1150. DOI: 10.3390/microorganisms10061150.
    [45]
    Nian X, Zhang J, Deng T, et al. AddaVax formulated with PolyI: C as a potential adjuvant of MDCK-based influenza vaccine enhances local, cellular, and antibody protective immune response in mice[J]. AAPS PharmSciTech, 2021, 22(8): 270. DOI: 10.1208/s12249-021-02145-0.
    [46]
    Wang X, Yin X, Zhang B, et al. A prophylactic effect of aluminium-based adjuvants against respiratory viruses via priming local innate immunity[J]. Emerg Microbes Infect, 2022, 11(1): 914-925. DOI: 10.1080/22221751.2022.2050951.
    [47]
    Bot A, Bot S, Bona CA. Protective role of gamma interferon during the recall response to influenza virus[J]. J Virol, 1998, 72(8): 6637-6645. DOI: 10.1128/JVI.72.8.6637-6645.1998.
    [48]
    Miyauchi K, Adachi Y, Tonouchi K, et al. Influenza virus infection expands the breadth of antibody responses through IL-4 signalling in B cells[J]. Nat Commun, 2021, 12(1): 3789. DOI: 10.1038/s41467-021-24090-z.
    [49]
    Sun W, Wang Z, Sun Y, et al. Safety, immunogenicity, and protective efficacy of an H5N1 chimeric cold-adapted attenuated virus vaccine in a mouse model[J]. Viruses, 2021, 13(12): 2420. DOI: 10.3390/v13122420.
    [50]
    Mcelhaney JE, Ewen C, Zhou X, et al. Granzyme B: correlates with protection and enhanced CTL response to influenza vaccination in older adults[J]. Vaccine, 2009, 27(18): 2418-2425. DOI: 10.1016/j.vaccine.2009.01.136.
    [51]
    Oftung F, Næss LM, Laake I, et al. FLU-v, a broad-spectrum influenza vaccine, induces cross-reactive cellular immune responses in humans measured by dual IFN-γ and granzyme B ELISpot assay[J]. Vaccines (Basel), 2022, 10(9): 1528. DOI: 10.3390/vaccines10091528.
    [52]
    Waerlop G, Leroux-Roels G, Lambe T, et al. Harmonization and qualification of an IFN-γ enzyme-linked immunospot assay (ELISPOT) to measure influenza-specific cell-mediated immunity within the FLUCOP consortium[J]. Front Immunol, 2022, 13: 984642. DOI: 10.3389/fimmu.2022.984642.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (411) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return