Citation: | XU Qiuyi, LEI Yuxuan, WEN Simin, SHU Yuelong. Research progress on cell-mediated immunity post influenza vaccination[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(4): 476-481. doi: 10.16462/j.cnki.zhjbkz.2023.04.018 |
[1] |
Krammer F, Smith GJD, Fouchier RAM, et al. Influenza[J]. Nat Rev Dis Primers, 2018, 4: 3. DOI: 10.1038/s41572-018-0002-y.
|
[2] |
Gamblin SJ, Vachieri SG, Xiong XL, et al. Hemagglutinin structure and activities[J]. Cold Spring Harb Perspect Med, 2021, 11(10): a038638. DOI: 10.1101/cshperspect.a038638.
|
[3] |
Janssens Y, Joye J, Waerlop G, et al. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation[J]. Front Immunol, 2022, 13: 959379. DOI: 10.3389/fimmu.2022.959379.
|
[4] |
Lafond KE, Porter RM, Whaley MJ, et al. Global burden of influenza-associated lower respiratory tract infections and hospitalizations among adults: a systematic review and meta-analysis[J]. PLoS Med, 2021, 18(3): e1003550. DOI: 10.1371/journal.pmed.1003550.
|
[5] |
Li L, Liu Y, Wu P, et al. Influenza-associated excess respiratory mortality in China, 2010-15: a population-based study[J]. Lancet Public Health, 2019, 4(9): e473-e481. DOI: 10.1016/S2468-2667(19)30163-X.
|
[6] |
Uyeki TM, Hui DS, Zambon M, et al. Influenza[J]. Lancet, 2022, 400(10353): 693-706. DOI: 10.1016/S0140-6736(22)00982-5.
|
[7] |
Imran M, Ortiz JR, Mclean HQ, et al. Relative effectiveness of cell-based versus egg-based quadrivalent influenza vaccines in adults during the 2019-2020 influenza season in the United States[J]. Open Forum Infect Dis, 2022, 9(10): ofac532. DOI: 10.1093/ofid/ofac532.
|
[8] |
Boikos C, Mcgovern I, Ortiz JR, et al. Relative vaccine effectiveness of adjuvanted trivalent influenza vaccine over three consecutive influenza seasons in the United States[J]. Vaccines, 2022, 10(9): 1456. DOI: 10.3390/vaccines10091456.
|
[9] |
Liu GX, Liu ZX, Zhao HY, et al. The effectiveness of influenza vaccine among elderly Chinese: a regression discontinuity design based on Yinzhou regional health information platform[J]. Hum Vaccin Immunother, 2022, 18(6): 2115751. DOI: 10.1080/21645515.2022.2115751.
|
[10] |
Boikos C, Mcgovern I, Molrine D, et al. Review of analyses estimating relative vaccine effectiveness of cell-based quadrivalent influenza vaccine in three consecutive US influenza seasons[J]. Vaccines, 2022, 10(6): 896. DOI: 10.3390/vaccines10060896.
|
[11] |
Rondy M, El Omeiri N, Thompson MG, et al. Effectiveness of influenza vaccines in preventing severe influenza illness among adults: a systematic review and meta-analysis of test-negative design case-control studies[J]. J Infect, 2017, 75(5): 381-394. DOI: 10.1016/j.jinf.2017.09.010.
|
[12] |
Imran M, Ortiz JR, Mclean HQ, et al. Relative effectiveness of cell-based versus egg-based quadrivalent influenza vaccines in children and adolescents in the United States during the 2019-2020 influenza season[J]. Pediatr Infect Dis J, 2022, 41(9): 769-774. DOI: 10.1097/INF.0000000000003620.
|
[13] |
Nachbagauer R, Choi A, Izikson R, et al. Age dependence and isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humans[J]. mBio, 2016, 7(1): e01996-e01915. DOI: 10.1128/mBio.01996-15.
|
[14] |
Keshavarz M, Mirzaei H, Salemi M, et al. Influenza vaccine: where are we and where do we go?[J]. Rev Med Virol, 2019, 29(1): e2014. DOI: 10.1002/rmv.2014.
|
[15] |
Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses[J]. Cell Host Microbe, 2023, 31(1): 146-157. DOI: 10.1016/j.chom.2022.11.016.
|
[16] |
Morens DM, Taubenberger JK. Making universal influenza vaccines: lessons from the 1918 pandemic[J]. J Infect Dis, 2019, 219(Suppl_1): S5-S13. DOI: 10.1093/infdis/jiy728.
|
[17] |
Erbelding EJ, Post DJ, Stemmy EJ, et al. A universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseases[J]. J Infect Dis, 2018, 218(3): 347-354. DOI: 10.1093/infdis/jiy103.
|
[18] |
Hobson D, Curry RL, Beare AS, et al. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses[J]. J Hyg (Lond), 1972, 70(4): 767-777. DOI: 10.1017/s0022172400022610.
|
[19] |
Becker T, Elbahesh H, Reperant LA, et al. Influenza vaccines: successes and continuing challenges[J]. J Infect Dis, 2021, 224(12 Suppl 2): S405-S419. DOI: 10.1093/infdis/jiab269.
|
[20] |
Ohmit SE, Petrie JG, Cross RT, et al. Influenza hemagglutination-inhibition antibody titer asa correlate of vaccine-induced protection[J]. J Infect Dis, 2011, 204(12): 1879-1885. DOI: 10.1093/infdis/jir661.
|
[21] |
Black S, Nicolay U, Vesikari T, et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children[J]. Pediatr Infect Dis J, 2011, 30(12): 1081-1085. DOI: 10.1097/INF.0b013e3182367662.
|
[22] |
Wijnans L, Voordouw B. A review of the changes to the licensing of influenza vaccines in Europe[J]. Influ Other Respir Viruses, 2016, 10(1): 2-8. DOI: 10.1111/irv.12351.
|
[23] |
Puig-Barberà J, Tamames-Gómez S, Plans-Rubio P, et al. Relative effectiveness of cell-cultured versus egg-based seasonal influenza vaccines in preventing influenza-related outcomes in subjects 18 years old or older: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2022, 19(2): 818. DOI: 10.3390/ijerph19020818.
|
[24] |
Kim YH, Hong KJ, Kim H, et al. Influenza vaccines: past, present, and future[J]. Rev Med Virol, 2022, 32(1): e2243. DOI: 10.1002/rmv.2243.
|
[25] |
Forrest BD, Pride MW, Dunning AJ, et al. Correlation of cellular immune responses with protection against culture-confirmed influenza virus in young children[J]. Clin Vaccine Immunol, 2008, 15(7): 1042-1053. DOI: 10.1128/CVI.00397-07.
|
[26] |
Lillie PJ, Berthoud TK, Powell TJ, et al. Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans[J]. Clin Infect Dis, 2012, 55(1): 19-25. DOI: 10.1093/cid/cis327.
|
[27] |
Joffre OP, Segura E, Savina A, et al. Cross-presentation by dendritic cells[J]. Nat Rev Immunol, 2012, 12(8): 557-569. DOI: 10.1038/nri3254.
|
[28] |
Nguyen AT, Lau HMP, Sloane H, et al. Homologous peptides derived from influenza A, B and C viruses induce variable CD8(+) T cell responses with cross-reactive potential[J]. Clin Transl Immunology, 2022, 11(10): e1422. DOI: 10.1002/cti2.1422.
|
[29] |
Lee LY, Ha Do LA, Simmons C, et al. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals[J]. J Clin Invest, 2008, 118(10): 3478-3490. DOI: 10.1172/JCI32460.
|
[30] |
Joe PT, Christopoulou I, van Hoecke L, et al. Intranodal administration of mRNA encoding nucleoprotein provides cross-strain immunity against influenza in mice[J]. J Transl Med, 2019, 17(1): 242. DOI: 10.1186/s12967-019-1991-3.
|
[31] |
Flynn JA, Weber T, Cejas PJ, et al. Characterization of humoral and cell-mediated immunity induced by mRNA vaccines expressing influenza hemagglutinin stem and nucleoprotein in mice and nonhuman primates[J]. Vaccine, 2022, 40(32): 4412-4423. DOI: 10.1016/j.vaccine.2022.03.063.
|
[32] |
Li YB, Li ZF, Zhao YW, et al. Potentiation of recombinant NP and M1-induced cellular immune responses and protection by physical radiofrequency adjuvant[J]. Vaccines (Basel), 2021, 9(12): 1382. DOI: 10.3390/vaccines9121382.
|
[33] |
Nelson SA, Sant AJ. Potentiating lung mucosal immunity through intranasal vaccination[J]. Front Immunol, 2021, 12: 808527. DOI: 10.3389/fimmu.2021.808527.
|
[34] |
Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing[J]. Annu Rev Immunol, 2013, 31: 443-473. DOI: 10.1146/annurev-immunol-032712-095910.
|
[35] |
Yang L, Li W, Kirberger M, et al. Design of nanomaterial based systems for novel vaccine development[J]. Biomater Sci, 2016, 4(5): 785-802. DOI: 10.1039/c5bm00507h.
|
[36] |
Luckheeram RV, Zhou R, Verma AD, et al. CD4+T cells: differentiation and functions[J]. Clin Dev Immunol, 2012, 2012: 925135. DOI: 10.1155/2012/925135.
|
[37] |
Dong CH, Wang Y, Zhu WD, et al. Polycationic HA/CpG nanoparticles induce cross-protective influenza immunity in mice[J]. ACS Appl Mater Interfaces, 2022, 14(5): 6331-6342. DOI: 10.1021/acsami.1c19192.
|
[38] |
Von Holle TA, Moody MA. Influenza and antibody-dependent cellular cytotoxicity[J]. Front Immunol, 2019, 10: 1457. DOI: 10.3389/fimmu.2019.01457.
|
[39] |
Vanderven HA, Ana-Sosa-Batiz F, Jegaskanda S, et al. What lies beneath: antibody dependent natural killer cell activation by antibodies to internal influenza virus proteins[J]. EBioMedicine, 2016, 8: 277-290. DOI: 10.1016/j.ebiom.2016.04.029.
|
[40] |
Picard E, Armstrong S, Andrew MK, et al. Markers of systemic inflammation are positively associated with influenza vaccine antibody responses with a possible role for ILT2(+)CD57(+) NK-cells[J]. Immun Ageing, 2022, 19(1): 26. DOI: 10.1186/s12979-022-00284-x.
|
[41] |
Kim M, Cheong Y, Lee J, et al. A host-restricted self-attenuated influenza virus provides broad pan-influenza a protection in a mouse model[J]. Front Immunol, 2021, 12: 779223. DOI: 10.3389/fimmu.2021.779223.
|
[42] |
Mellman I, Koch T, Healey G, et al. Structure and function of Fc receptors on macrophages and lymphocytes[J]. J Cell Sci Suppl, 1988, 9: 45-65. DOI: 10.1242/jcs.1988.supplement_9.3.
|
[43] |
Mcnab F, Mayer-Barber K, Sher A, et al. Type I interferons in infectious disease[J]. Nat Rev Immunol, 2015, 15(2): 87-103. DOI: 10.1038/nri3787.
|
[44] |
Desheva Y, Leontieva G, Kramskaya T, et al. Live influenza vaccine provides early protection against homologous and heterologous influenza and may prevent post-influenza pneumococcal infections in mice[J]. Microorganisms, 2022, 10(6): 1150. DOI: 10.3390/microorganisms10061150.
|
[45] |
Nian X, Zhang J, Deng T, et al. AddaVax formulated with PolyI: C as a potential adjuvant of MDCK-based influenza vaccine enhances local, cellular, and antibody protective immune response in mice[J]. AAPS PharmSciTech, 2021, 22(8): 270. DOI: 10.1208/s12249-021-02145-0.
|
[46] |
Wang X, Yin X, Zhang B, et al. A prophylactic effect of aluminium-based adjuvants against respiratory viruses via priming local innate immunity[J]. Emerg Microbes Infect, 2022, 11(1): 914-925. DOI: 10.1080/22221751.2022.2050951.
|
[47] |
Bot A, Bot S, Bona CA. Protective role of gamma interferon during the recall response to influenza virus[J]. J Virol, 1998, 72(8): 6637-6645. DOI: 10.1128/JVI.72.8.6637-6645.1998.
|
[48] |
Miyauchi K, Adachi Y, Tonouchi K, et al. Influenza virus infection expands the breadth of antibody responses through IL-4 signalling in B cells[J]. Nat Commun, 2021, 12(1): 3789. DOI: 10.1038/s41467-021-24090-z.
|
[49] |
Sun W, Wang Z, Sun Y, et al. Safety, immunogenicity, and protective efficacy of an H5N1 chimeric cold-adapted attenuated virus vaccine in a mouse model[J]. Viruses, 2021, 13(12): 2420. DOI: 10.3390/v13122420.
|
[50] |
Mcelhaney JE, Ewen C, Zhou X, et al. Granzyme B: correlates with protection and enhanced CTL response to influenza vaccination in older adults[J]. Vaccine, 2009, 27(18): 2418-2425. DOI: 10.1016/j.vaccine.2009.01.136.
|
[51] |
Oftung F, Næss LM, Laake I, et al. FLU-v, a broad-spectrum influenza vaccine, induces cross-reactive cellular immune responses in humans measured by dual IFN-γ and granzyme B ELISpot assay[J]. Vaccines (Basel), 2022, 10(9): 1528. DOI: 10.3390/vaccines10091528.
|
[52] |
Waerlop G, Leroux-Roels G, Lambe T, et al. Harmonization and qualification of an IFN-γ enzyme-linked immunospot assay (ELISPOT) to measure influenza-specific cell-mediated immunity within the FLUCOP consortium[J]. Front Immunol, 2022, 13: 984642. DOI: 10.3389/fimmu.2022.984642.
|