Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 28 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
JIANG Yuqi, LONG Jiang, ZHAO Jinhua, ZHANG Huayi, DENG Ping, JIANG Wenqi. The spatio-temporal analysis and prediction model comparison of incidence rate of other infectious diarrhea diseases in Qinghai Province from 2017 to 2023[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(11): 1301-1307. doi: 10.16462/j.cnki.zhjbkz.2024.11.010
Citation: JIANG Yuqi, LONG Jiang, ZHAO Jinhua, ZHANG Huayi, DENG Ping, JIANG Wenqi. The spatio-temporal analysis and prediction model comparison of incidence rate of other infectious diarrhea diseases in Qinghai Province from 2017 to 2023[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(11): 1301-1307. doi: 10.16462/j.cnki.zhjbkz.2024.11.010

The spatio-temporal analysis and prediction model comparison of incidence rate of other infectious diarrhea diseases in Qinghai Province from 2017 to 2023

doi: 10.16462/j.cnki.zhjbkz.2024.11.010
Funds:

National Natural Science Foundation of China Project 12371503

"Kunlun Talents-Plateau Famous Doctors" Project Qing Health Offic [2021] No.104

More Information
  • Corresponding author: LONG Jiang, E-mail: 68803648@163.com; ZHAO Jinhua, E-mail: 99801973@qq.com
  • Received Date: 2024-06-11
  • Rev Recd Date: 2024-09-05
  • Available Online: 2024-12-23
  • Publish Date: 2024-11-10
  •   Objective  To analyze the epidemiological trends and characteristics of other infectious diarrheal diseases(OIDD) in Qinghai Province, and to provide predictions for these diseases in Qinghai Province for 2024.  Methods  Using monthly and annual incidence rates of OIDD in Qinghai Province from January 2017 to December 2023 as primary data, the study employed ArcGIS 10.8 software for map visualization of annual incidence rates in Qinghai Province, and GeoDa 1.16 software for spatial autocorrelation analysis. R 4.3.1 software was used to construct various models for OIDD in Qinghai Province, including seasonal autoregressive integrated moving average (SARIMA) model, triple exponential smoothing (Holt-Winters) model, neural network autoregression (NNAR) model, trigonometric seasonality, Box-Cox transformation (TBATS) model, and Prophet model. The models′ fitting effects were evaluated using root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).  Results  All models, except the Holt-Winters model, effectively captured the incidence rate trends. Among them, the NNAR model performed best in the training set, with MAE of 0.90, RMSE of 1.25, and MAPE of 16.43, outperforming models such as TBATS. In the test set, while its RMSE value was higher than those of the SARIMA and TBATS models, its MAE and MAPE values were lower than other models, indicating the best overall predictive performance. Therefore, the NNAR model can be used to forecast the incidence rate of OIDD in Qinghai Province for 2024, providing insights for disease prevention strategies in high-altitude regions.  Conclusions  From 2017 to 2023, Xining City, Haidong City, and Huangnan Tibetan Autonomous Prefecture in Qinghai Province were high-incidence areas for OIDD. Among the predictive models, the NNAR model showed the best performance. However, in practical applications, it is necessary to develop corresponding prevention and control measures by considering the spatiotemporal characteristics and epidemic trends of each region.
  • loading
  • [1]
    Chen C, Guan Z, Huang CY, et al. Epidemiological trends and hotspots of other infectious diarrhea (OID) in mainland China: a population-based surveillance study from 2004 to 2017 [J]. Front Public Health, 2021, 9: 679853. DOI: 10.3389/fpubh.2021.679853.
    [2]
    李欣, 靳金, 史雪宁, 等. 2010―2017年全国其他感染性腹泻空间聚集情况及预测[J]. 中华疾病控制杂志, 2022, 26(4): 376-379, 462. DOI: 10.16462/j.cnki.zhjbkz.2022.04.002.

    Li X, Jin J, Shi XN, et al. Spatial aggregation and prediction model of other infectious diarrhea in China from 2010 to 2017 [J]. Chin J Dis Control Prev, 2022, 26(4): 376-379, 462. DOI: 10.16462/j.cnki.zhjbkz.2022.04.002.
    [3]
    任婧寰, 王锐. 2017―2021年我国其他感染性腹泻突发公共卫生事件流行特征分析[J]. 热带病与寄生虫学, 2023, 21(1): 1-6, 29. DOI: 10.3969/j.issn.1672-2302.2023.01.001.

    Ren JH, Wang R. Epidemiological characteristics of public health emergencies caused by other infectious diarrhea in China from 2017 to 2021 [J]. J Trop Dis Parasitol, 2023, 21(1): 1-6, 29. DOI: 10.3969/j.issn.1672-2302.2023.01.001.
    [4]
    Chen YG. Reconstruction and normalization of LISA for spatial analysis [J]. PLoS One, 2024, 19(5): e0303456. DOI: 10.1371/journal.pone.0303456.
    [5]
    Liu PB, Zhang XY, Deng GY, et al. Sociodemographic factors impacting the spatial distribution of private dental clinics in major cities of Peoples Republic of China [J]. Int Dent J, 2024, 74(5): 1089-1101. DOI: 10.1016/j.identj.2024.03.009.
    [6]
    Devi R, Agrawal A, Dhar J, et al. Forecasting of Indian tourism industry using modeling approach [J]. Methods X, 2024, 12: 102723. DOI: 10.1016/j.mex.2024.102723.
    [7]
    Almarashi AM, Daniyal M, Jamal F. Modelling the GDP of KSA using linear and non-linear NNAR and hybrid stochastic time series models [J]. PLoS One, 2024, 19(2): e0297180. DOI: 10.1371/journal.pone.0297180.
    [8]
    Chen QQ, Zheng XY, Shi HH, et al. Prediction of influenza outbreaks in Fuzhou, China: comparative analysis of forecasting models [J]. BMC Public Health, 2024, 24(1): 1399. DOI: 10.1186/s12889-024-18583-x.
    [9]
    刘泽, 张娜娜, 程杨, 等. 青海省医疗资源配置的空间公平与效率评价[J]. 地理科学进展, 2023, 42(10): 1891-1903. DOI: 10.18306/dlkxjz.2023.10.003.

    Liu Z, Zhang NN, Cheng Y, et al. Spatial equity and efficiency of medical resource allocation in Qinghai Province [J]. Progress in Geographic Sciences, 2023, 42(10): 1891-1903. DOI: 10.18306/dlkxjz.2023.10.003.
    [10]
    郝彩霞, 刘雅琼, 廖雪春, 等. 2017―2021年四川省其他感染性腹泻流行特征分析[J]. 热带病与寄生虫学, 2023, 21(1): 7-12, 24. DOI: 10.3969/j.issn.1672-2302.2023.01.002.

    Hao CX, Liu YQ, Liao XC, et al. Epidemiological characteristics of other infectious diarrhea in Sichuan Province from 2017 to 2021 [J]. J Trop Dis Parasitol, 2023, 21(1): 7-12, 24. DOI: 10.3969/j.issn.1672-2302.2023.01.002.
    [11]
    沈秀莲, 何继波, 黄甜, 等. 云南省2005―2022年其他感染性腹泻流行病学特征及趋势分析[J]. 中国热带医学, 2024, 24(9): 1153-1160. DOI: 10.13604/j.cnki.46-1064/r.2024.09.23.

    Shen XL, He JB, Huang T, et al. Epidemiological characteristics and trend analysis of other infectious diarrhea in Yunnan Province from 2005 to 2022 [J] China Tropical Medcine, 2024, 24(9): 1153-1160 DOI: 10.13604/j.cnki.46-1064/r.2024.09.23.
    [12]
    郭珍, 陈莉. 2017―2022年东海县牛山街道疑似预防接种异常反应监测分析及预测[J]. 现代医学, 2024, 52(3): 421-426. DOI: 10.3969/j.issn.1671-7562.2024.03.014.

    Guo Z, Chen L. Monitoring, analysis and prediction of suspected adverse reaction to vaccination in Niu Shan street of Donghai County from 2017 to 2022 [J]. Mod Med J, 2024, 52(3): 421-426. DOI: 10.3969/j.issn.1671-7562.2024.03.014.
    [13]
    马晨哲, 王霄, 杨波, 等. 基于ARIMA与NNAR模型的甘肃省胰腺癌发病趋势预测[J]. 现代肿瘤医学, 2024, 32(11): 2080-2084. DOI: 10.3969/j.issn.1672-4992.2024.11.023.

    Ma CZ, Wang X, Yang B, et al. Prediction of incidence trend of pancreatic cancer in Gansu Province based on ARIMA and NNAR models [J] Modern Oncology, 2024, 32(11): 2080-2084 DOI: 10.3969/j.issn.1672-4992.2024.11.023.
    [14]
    Kuan MM. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan [J]. PeerJ, 2022, 10: e13117. DOI: 10.7717/peerj.13117.
    [15]
    Hoxha E, Francart N, Tozan B, et al. Spatiotemporal tracking of building materials and their related environmental impacts [J]. Sci Total Environ, 2024, 912: 168853. DOI: 10.1016/j.scitotenv.2023.168853.
    [16]
    Hasan MM, Ng KTW, Ray S, et al. Prophet time series modeling of waste disposal rates in four North American cities [J]. Environ Sci Pollut Res, 2024, 31(21): 31343-31354. DOI: 10.1007/s11356-024-33335-5.
    [17]
    温福东, 赵彬宇, 苏月, 等. 基于Prophet模型预测中国布鲁氏菌病发病人数[J]. 中国医院统计, 2024, 31(1): 7-10. DOI: 10.3969/j.issn.1006-5253.2024.01.002.

    Wen FD, Zhao BY, Su Y, et al. Predicting the incidence of brucellosis in China based on the Prophet model [J] Chinese Hospital Statistics, 2024, 31(1): 7-10 DOI: 10.3969/j.issn.1006-5253.2024.01.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (53) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return