Citation: | WANG Xueqi, HE Na. Systematic review of CRISPR applied to point-of-care nucleic acid detection[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2024.11.016 |
[1] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336): 438-442. DOI: 10.1126/science.aam9321.
|
[2] |
Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases [J]. Nat Protoc, 2019, 14(10): 2986-3012. DOI: 10.1038/s41596-019-0210-2.
|
[3] |
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [J]. Nature, 2020, 579: 270-273. DOI: 10.1038/s41586-020-2012-7.
|
[4] |
Wu J, Li J, Zhu G, et al. Clinical features of maintenance hemodialysis patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China [J]. Clin J Am Soc Nephrol, 2020, 15(8): 1139-1145. DOI: 10.2215/CJN.04160320.
|
[5] |
Agrawal S, Fanton A, Chandrasekaran SS, et al. Rapid, point-of-care molecular diagnostics with Cas13 [J]. medRxiv, 2021: 2020.12.14.20247874. DOI: 10.1101/2020.12.14.20247874.
|
[6] |
Brandsma E, Verhagen HJMP, van de Laar TJW, et al. Rapid, sensitive, and specific severe acute respiratory syndrome coronavirus 2 detection: a multicenter comparison between standard quantitative reverse-transcriptase polymerase chain reaction and CRISPR-based DETECTR [J]. J Infect Dis, 2021, 223(2): 206-213. DOI: 10.1093/infdis/jiaa641.
|
[7] |
Abugattas-Núñez Del Prado J, Quintana Reyes A, Leon J, et al. Clinical validation of RCSMS: a rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva [J]. PLoS One, 2024, 19(3): e0290466. DOI: 10.1371/journal.pone.0290466.
|
[8] |
Jirawannaporn S, Limothai U, Tachaboon S, et al. Rapid and sensitive point-of-care detection of Leptospira by RPA-CRISPR/Cas12a targeting lipL32 [J]. PLoS Negl Trop Dis, 2022, 16(1): e0010112. DOI: 10.1371/journal.pntd.0010112.
|
[9] |
Ding RH, Long JZ, Yuan MZ, et al. CRISPR/Cas12-based ultra-sensitive and specific point-of-care detection of HBV [J]. Int J Mol Sci, 2021, 22(9): 4842. DOI: 10.3390/ijms22094842.
|
[10] |
Qian WD, Huang J, Wang XF, et al. CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII. 4 [J]. Virology, 2021, 564: 26-32. DOI: 10.1016/j.virol.2021.09.008.
|
[11] |
Feng W, Peng HY, Xu JY, et al. Integrating reverse transcription recombinase polymerase amplification with CRISPR technology for the one-tube assay of RNA [J]. Anal Chem, 2021, 93(37): 12808-12816. DOI: 10.1021/acs.analchem.1c03456.
|
[12] |
Wang R, Qian CY, Pang YN, et al. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection [J]. Biosens Bioelectron, 2021, 172: 112766. DOI: 10.1016/j.bios.2020.112766.
|
[13] |
Casati B, Verdi JP, Hempelmann A, et al. Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO [J]. Nat Commun, 2022, 13(1): 3308. DOI: 10.1038/s41467-022-30862-y.
|
[14] |
Kham-Kjing N, Ngo-Giang-Huong N, Tragoolpua K, et al. Highly specific and rapid detection of hepatitis C virus using RT-LAMP-coupled CRISPR-Cas12 assay [J]. Diagnostics, 2022, 12(7): 1524. DOI: 10.3390/diagnostics12071524.
|
[15] |
Patchsung M, Homchan A, Aphicho K, et al. A multiplexed Cas13-based assay with point-of-care attributes for simultaneous COVID-19 diagnosis and variant surveillance [J]. CRISPR J, 2023, 6(2): 99-115. DOI: 10.1089/crispr.2022.0048.
|
[16] |
Lu SH, Tong XH, Han Y, et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a [J]. Nat Biomed Eng, 2022, 6(3): 286-297. DOI: 10.1038/s41551-022-00861-x.
|
[17] |
Bhatt A, Fatima Z, Ruwali M, et al. CLEVER assay: a visual and rapid RNA extraction-free detection of SARS-CoV-2 based on CRISPR-Cas integrated RT-LAMP technology [J]. J Appl Microbiol, 2022, 133(2): 410-421. DOI: 10.1111/jam.15571.
|
[18] |
Ali Z, Sánchez E, Tehseen M, et al. Bio-SCAN: a CRISPR/dCas9-based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2 [J]. ACS Synth Biol, 2022, 11(1): 406-419. DOI: 10.1021/acssynbio.1c00499.
|
[19] |
Arizti-Sanz J, Bradley A, Zhang YB, et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants [J]. Nat Biomed Eng, 2022, 6(8): 932-943. DOI: 10.1038/s41551-022-00889-z.
|
[20] |
Figueiredo D, Cascalheira A, Goncalves J. Rapid, multiplex detection of SARS-CoV-2 using isothermal amplification coupled with CRISPR-Cas12a [J]. Sci Rep, 2023, 13(1): 849. DOI: 10.1038/s41598-022-27133-7.
|
[21] |
Zhou X, Wang SW, Ma Y, et al. Rapid detection of avian influenza virus based on CRISPR-Cas12a [J]. Virol J, 2023, 20(1): 261. DOI: 10.1186/s12985-023-02232-7.
|
[22] |
Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13 [J]. Science, 2018, 360(6387): 444-448. DOI: 10.1126/science.aas8836.
|
[23] |
Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387): 436-439. DOI: 10.1126/science.aar6245.
|
[24] |
Fozouni P, Son S, de León Derby MD, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy [J]. Cell, 2021, 184(2): 323-333. e9. DOI: 10.1016/j.cell.2020.12.001.
|
[25] |
Nagai K, Horita N, Yamamoto M, et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis [J]. Sci Rep, 2016, 6: 39090. DOI: 10.1038/srep39090.
|
[26] |
Patchsung M, Jantarug K, Pattama A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA [J]. Nat Biomed Eng, 2020, 4(12): 1140-1149. DOI: 10.1038/s41551-020-00603-x.
|