Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 29 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
LIN Lu, HE Pingping, QIU Sihui, QIU Xiaohui, CHEN Jiangping, WANG Jin. A latent class analysis of cognitive impairment in the elderly in China and its influencing factors[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 386-392. doi: 10.16462/j.cnki.zhjbkz.2025.04.003
Citation: LIN Lu, HE Pingping, QIU Sihui, QIU Xiaohui, CHEN Jiangping, WANG Jin. A latent class analysis of cognitive impairment in the elderly in China and its influencing factors[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 386-392. doi: 10.16462/j.cnki.zhjbkz.2025.04.003

A latent class analysis of cognitive impairment in the elderly in China and its influencing factors

doi: 10.16462/j.cnki.zhjbkz.2025.04.003
Funds:

Natural Science Foundation of Hunan Province 2023JJ30426

Key Project of Social Science Achievement Evaluation Committee of Hunan Province XSP20ZDI013

More Information
  • Corresponding author: HE Pingping, E-mail: 793572859@qq.com
  • Received Date: 2024-06-26
  • Rev Recd Date: 2024-12-02
  • Publish Date: 2025-04-10
  •   Objective  To explore the latent categories of cognitive impairment in the elderly in China and identify its influencing factors, providing a reference for the effective identification of cognitive impairment in older adults.  Methods  Data from the 2018 Chinese longitudinal healthy longevity survey (CLHLS) released in April 2020 were used, a latent profile analysis was employed to identify the categories of cognitive impairment among the elderly, and multiple logistic regression analysis was used to explore the influencing factors of these categories.  Results  A total of 8 913 elderly individuals aged 65 years and above were included in the study. Significant heterogeneity in cognitive impairment was observed, and three distinct patterns emerged: no or mild cognitive impairment (85.5%), moderate cognitive impairment (6.5%), and severe cognitive impairment (8.0%). The results of the multivariate logistic regression analysis showed that age (OR=0.128, 95% CI: 0.089-0.184), sleep duration(OR=0.799, 95% CI: 0.667-0.956), years of education(OR=2.132, 95% CI: 1.025-4.434), self-rated health(OR=1.832, 95% CI: 1.449-2.316), physical exercise(OR=2.236, 95% CI: 1.751-2.855), marital status (OR=2.266, 95% CI: 1.772-2.899), depression(OR=0.829, 95% CI: 0.619-1.112), anxiety(OR=0.757, 95% CI: 0.579-0.989), alcohol (OR=1.576, 95% CI: 1.125-2.208), and childhood hunger(OR=0.755, 95% CI: 0.605-0.941) were all influencing factors of cognitive impairment in the elderly, and these were statistically significant (all P<0.05).  Conclusions  Cognitive impairment among the elderly in China is most severe in terms of reaction time and memory loss, followed by impairments in language, comprehension, and self-coordination abilities. These impairments are influenced by multiple factors, suggesting that healthcare professionals need to adopt more targeted interventions to improve cognitive function in the elderly.
  • loading
  • [1]
    姚玉祥, 吕指臣. 人口老龄化、社会保障支出与收入分配[J]. 云南民族大学学报(哲学社会科学版), 2024, 41(2): 68-79. DOI: 10.13727/j.cnki.53-1191/c.20240305.008.

    Yao YX, Lyu ZC. Population aging, social security expenditure and income distribution[J]. J Yunnan Minzu Univ Philos Soc Sci Ed, 2024, 41(2): 68-79. DOI: 10.13727/j.cnki.53-1191/c.20240305.008.
    [2]
    国家统计局. 第七次全国人口普查公报(第二号)[EB/OL]. (2021-05-21)[2025-01-13] https://www.stats.gov.cn/zt_18555/zdtjgz/zgrkpc/dqcrkpc/ggl/202302/t20230215_1903998.html.
    [3]
    Morley JE. An overview of cognitive impairment[J]. Clin Geriatr Med, 2018, 34(4): 505-513. DOI: 10.1016/j.cger.2018.06.003.
    [4]
    Guo J, Dove A, Wang J, et al. Trajectories of olfactory identification preceding incident mild cognitive impairment and dementia: a longitudinal study[J]. EBioMedicine, 2023, 98: 104862. DOI: 10.1016/j.ebiom.2023.104862.
    [5]
    Smith L, Shin JI, López Sánchez GF, et al. Social participation and mild cognitive impairment in low-and middle-income countries[J]. Prev Med, 2022, 164: 107230. DOI: 10.1016/j.ypmed.2022.107230.
    [6]
    Hu MY, Shu XH, Yu G, et al. A risk prediction model based on machine learning for cognitive impairment among Chinese community-dwelling elderly people with normal cognition: development and validation study[J]. J Med Internet Res, 2021, 23(2): e20298. DOI: 10.2196/20298.
    [7]
    Pei ZF, Zhang JJ, Qin WZ, et al. Association between dietary patterns and depression in Chinese older adults: a longitudinal study based on CLHLS[J]. Nutrients, 2022, 14(24): 5230. DOI: 10.3390/nu14245230.
    [8]
    Lam MI, Bai W, Feng Y, et al. Comparing network structures of depressive and anxiety symptoms between demographically-matched heart disease and heart disease free samples using propensity score matching: findings from the Chinese longitudinal healthy longevity survey (CLHLS)[J]. J Psychosom Res, 2024, 187: 111910. DOI: 10.1016/j.jpsychores.2024.111910.
    [9]
    尹奎, 彭坚, 张君. 潜在剖面分析在组织行为领域中的应用[J]. 心理科学进展, 2020, 28(7): 1056-1070. DOI: 10.3724/SP.J.1042.2020.01056.

    Yin K, Peng J, Zhang J. The application of latent profile analysis in organizational behavior research[J]. Adv Psychol Sci, 2020, 28(7): 1056-1070. DOI: 10.3724/SP.J.1042.2020.01056.
    [10]
    Lenze EJ, Voegtle M, Miller JP, et al. Effects of mindfulness training and exercise on cognitive function in older adults: a randomized clinical trial[J]. JAMA. 2022, 328(22): 2218-2229. DOI: 10.1001/jama.2022.21680.
    [11]
    Wang YY, Zhang M, Wang XX, et al. Correlates of cognitive impairment in the elderly in China: a cross-sectional study[J]. Front Public Health, 2022, 10: 973661. DOI: 10.3389/fpubh.2022.973661.
    [12]
    Deng QW, Liu WB. Inequalities in cognitive impairment among older adults in China and the associated social determinants: a decomposition approach[J]. Int J Equity Health, 2021, 20(1): 82. DOI: 10.1186/s12939-021-01422-5.
    [13]
    Nerobkova N, Park YS, Shin J, et al. Marital transition and cognitive function among older adults: the Korean longitudinal study of aging (2006-2020)[J]. BMC Geriatr, 2022, 22(1): 1003. DOI: 10.1186/s12877-022-03697-x.
    [14]
    Yu R, Chau PH, McGhee SM, et al. Trends in prevalence and mortality of dementia in elderly Hong Kong population: projections, disease burden, and implications for long-term care[J]. Int J Alzheimers Dis, 2012, 2012: 406852. DOI: 10.1155/2012/406852.
    [15]
    Tan V, Chen C, Merchant RA. Association of social determinants of health with frailty, cognitive impairment, and self-rated health among older adults[J]. PLoS One, 2022, 17(11): e0277290. DOI: 10.1371/journal.pone.0277290.
    [16]
    Chang YT. Physical activity and cognitive function in mild cognitive impairment[J]. ASN Neuro, 2020, 12: 1759091419901182. DOI: 10.1177/1759091419901182.
    [17]
    刘晓婷, 陈铂麟. 中国老年人认知功能状态转移规律及风险因素研究[J]. 人口研究, 2020, 44(4): 18-32.

    Liu XT, Chen BL. Cognitive function transition and risk factors for older adults in China[J]. Popul Res, 2020, 44(4): 18-32.
    [18]
    Xu W, Tan CC, Zou JJ, et al. Sleep problems and risk of all-cause cognitive decline or dementia: an updated systematic review and Meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2020, 91(3): 236-244. DOI: 10.1136/jnnp-2019-321896.
    [19]
    Hudson AN, Van Dongen HPA, Honn KA. Sleep deprivation, vigilant attention, and brain function: a review[J]. Neuropsycho-pharmacology, 2020, 45(1): 21-30. DOI: 10.1038/s41386-019-0432-6.
    [20]
    Akagi Y, Kabayama M, Gondo Y, et al. Alcohol drinking patterns have a positive association with cognitive function among older people: a cross-sectional study[J]. BMC Geriatr, 2022, 22(1): 158. DOI: 10.1186/s12877-022-02852-8.
    [21]
    Zhang RY, Shen LQ, Miles T, et al. Association of low to moderate alcohol drinking with cognitive functions from middle to older age among US adults[J]. JAMA Netw Open, 2020, 3(6): e207922. DOI: 10.1001/jamanetworkopen.2020.7922.
    [22]
    刘亚飞. 童年饥饿经历会影响老年健康吗?[J]. 经济评论, 2018, (6): 113-126. DOI: 10.19361/j.er.2018.06.09.

    Liu YF. Does starvation in childhood affect health in old age?[J]. Econ Rev, 2018, (6): 113-126. DOI: 10.19361/j.er.2018.06.09.
    [23]
    Muhammad T, Meher T. Association of late-life depression with cognitive impairment: evidence from a cross-sectional study among older adults in India[J]. BMC Geriatr, 2021, 21(1): 364. DOI: 10.1186/s12877-021-02314-7.
    [24]
    赵羚, 孙文悦, 刘金玲, 等. 老年血管性认知功能障碍患者MOCA评分与焦虑、抑郁的相关性[J]. 中国老年学杂志, 2020, 40(22): 4810-4812. DOI: 10.3969/j.issn.1005-9202.2020.22.034.

    Zhao L, Sun WY, Liu JL, et al. Correlation between MOCA score and anxiety and depression in elderly patients with vascular cognitive dysfunction[J]. Chin J Gerontol, 2020, 40(22): 4810-4812. DOI: 10.3969/j.issn.1005-9202.2020.22.034.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (70) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return