Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 29 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
LI Jing, TIAN Jing, YANG Hong, YAN Jingjing, WANG Yajing, ZHANG Yanbo. Construction of the mortality prognostic model for patients with coronary heart disease combined with chronic heart failure based on a semi-parametric smooth error accelerate failure time model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 421-430. doi: 10.16462/j.cnki.zhjbkz.2025.04.008
Citation: LI Jing, TIAN Jing, YANG Hong, YAN Jingjing, WANG Yajing, ZHANG Yanbo. Construction of the mortality prognostic model for patients with coronary heart disease combined with chronic heart failure based on a semi-parametric smooth error accelerate failure time model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 421-430. doi: 10.16462/j.cnki.zhjbkz.2025.04.008

Construction of the mortality prognostic model for patients with coronary heart disease combined with chronic heart failure based on a semi-parametric smooth error accelerate failure time model

doi: 10.16462/j.cnki.zhjbkz.2025.04.008
Funds:

National Natural Science Foundation of China 82173631

Project of Transformation of Scientific and Technological Achievements of Shanxi Province 202104021301063

Special Project of Science and Technology Innovation Talent Team of Shanxi Province 202204051001026

More Information
  • Corresponding author: ZHANG Yanbo, E-mail: sxmuzyb@126.com
  • Received Date: 2024-07-29
  • Rev Recd Date: 2024-10-28
  • Publish Date: 2025-04-10
  •   Objective  This study introduced a semi-parametric smooth error accelerated failure time (AFT) model to construct mortality prognostic models for patients with coronary heart disease (CHD) combined with chronic heart failure (CHF).  Methods  This study included 3 980 patients diagnosed with CHD combined with CHF from two hospitals in Shanxi Province between January 2014 and April 2019. Traditional AFT models (with 8 time distributions) and a smoothed error AFT model were applied to construct one- and three-year mortality risk models. The optimal model was determined based on the Akaike information criterion (AIC).  Results  The lognormal AFT model consistently demonstrated the lowest AIC value. The AIC value of the smoothed error AFT model was close to the lowest, indicating good model fit and simplicity. The variables selected by the two optimal models were consistent. For the one-year survival outcomes, elevated N-terminal pro-B-type natriuretic peptide (NT-proBNP), New York heart association (NYHA) class Ⅳ, decreased albumin levels, elevated heart rate, and decreased sodium levels [all with time ratios (TR) < 1, P < 0.05] were associated with reduced patient survival times. Conversely, treatment with lipid lowering, overweight, and decreased heart rate (all with TR>1, P < 0.05) were associated with extended survival times. For the three-year survival outcome, elevated NT-proBNP levels, older age, elevated age-adjusted Charlson comorbidity index, NYHA class Ⅳ, decreased albumin levels, elevated heart rate, and prolonged QRS duration (all with TR < 1, P < 0.05) were associated with reduced survival times. In addition, lipid lowering therapy, overweight or obesity, and decreased heart rate (all with TR>1, P<0.05) were associated with extended survival times.  Conclusions  This study uses a semi-parametric smooth error AFT model to indentify the influencing factors of patients survival over 1 and 3 years, aiding in the identification of high-risk individuals and enabling early intervention to improve patient prognosis.
  • loading
  • [1]
    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6): 583-612. DOI: 10.3969/j.issn.1000-3614.2023.06.001.

    China Cardiovascular Health and Disease Report Writing Group. Report on cardiovascular health and diseases in China 2022: an updated summary [J]. Chinese Circulation Journal, 2023, 38(6): 583-612. DOI: 10.3969/j.issn.1000-3614.2023.06.001.
    [2]
    苗立鹏, 任柯好, 李梦蝶, 等. 2009―2021年中国心血管疾病死亡趋势分析与预测研究[J]. 中国全科医学, 2024, 27(18): 2260-2264, 2271. DOI: 10.12114/j.issn.1007-9572.2023.0773.

    Miao LP, Ren KH, Li MD, et al. Trend analysis and prediction of cardiovascular disease mortality in China from 2009 to 2021 [J]. Chin Gen Pract, 2024, 27(18): 2260-2264, 2271. DOI: 10.12114/j.issn.1007-9572.2023.0773.
    [3]
    Bragazzi NL, Zhong W, Shu JX, et al. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017 [J]. Eur J Prev Cardiol, 2021, 28(15): 1682-1690. DOI: 10.1093/eurjpc/zwaa147.
    [4]
    Zhang YH, Zhang J, Butler J, et al. Contemporary epidemiology, management, and outcomes of patients hospitalized for heart failure in China: results from the China heart failure (China-HF) registry [J]. J Card Fail, 2017, 23(12): 868-875. DOI: 10.1016/j.cardfail.2017.09.014.
    [5]
    Strandberg E, Lin XY, Xu RH. Estimation of main effect when covariates have non-proportional hazards [J]. Commun Stat Simul Comput, 2014, 43(7): 1760-1770. DOI: 10.1080/03610918.2012.744043.
    [6]
    Rupani MP, Soundararajan S. Survival analysis shows tuberculosis patients with silicosis experience earlier mortality and need employer-led care models in occupational settings in India [J]. Sci Rep, 2024,14(1): 28891. DOI: 10.1038/s41598-024-80367-5.
    [7]
    Komárek A, Lesaffre E, Hilton JF. Accelerated failure time model for arbitrarily censored data with smoothed error distribution [J]. J Comput Graph Stat, 2005, 14(3): 726-745. DOI: 10.1198/106186005x63734.
    [8]
    Agete A, Ayalew MM, Admassu S, et al. Prevalence and associated factors of teenage childbearing among Ethiopian women using semi-parametric and parametric proportional hazard and accelerated failure time models [J]. BMC Womens Health, 2024, 24(1): 342. DOI: 10.1186/s12905-024-03190-0.
    [9]
    Mardhiah K, Wan-Arfah N, Naing NN, et al. Comparison of Cox proportional hazards model, Cox proportional hazards with time-varying coefficients model, and lognormal accelerated failure time model [J]. Asian Pac J Trop Med, 2022, 15(3): 128-134. DOI: 10.4103/1995-7645.340568.
    [10]
    肖媛媛, 陈莹, 何利平, 等. 不同删失比例下AFT模型与Cox模型表现比较的模拟研究[J]. 中国卫生统计, 2017, 34(4): 676-680.

    Xiao YY, Chen Y, He LP, et al. A simulation study comparing the performance of the AFT model and the Cox model under different censoring ratios [J]. Chinese Journal of Health Statistics, 2017, 34(4): 676-680.
    [11]
    任晓卫, 余红梅. 光滑误差项分布的加速失效时间模型及其医学应用[J]. 中国卫生统计, 2008, 25(5): 487-488, 493. DOI: 10.3969/j.issn.1002-3674.2008.05.012.

    Ren XW, Yu HM. Accelerated failure time model with smoothed error distribution and its application in medicine [J]. Chinese Journal of Health Statistics, 2008, 25(5): 487-488, 493. DOI: 10.3969/j.issn.1002-3674.2008.05.012.
    [12]
    Hendricks S, Dykun I, Balcer B, et al. Higher BNP/NT-pro BNP levels stratify prognosis equally well in patients with and without heart failure: a Meta-analysis [J]. ESC Heart Fail, 2022, 9(5): 3198-3209. DOI: 10.1002/ehf2.14019.
    [13]
    Abdellatif M, Rainer PP, Sedej S, et al. Hallmarks of cardiovascular ageing [J]. Nat Rev Cardiol, 2023, 20(11): 754-777. DOI: 10.1038/s41569-023-00881-3.
    [14]
    Tromp J, Paniagua SMA, Lau ES, et al. Age dependent associations of risk factors with heart failure: pooled population based cohort study [J]. BMJ, 2021, 372: n461. DOI: 10.1136/bmj.n461.
    [15]
    Shuvy M, Zwas DR, Keren A, et al. The age-adjusted Charlson comorbidity index: a significant predictor of clinical outcome in patients with heart failure [J]. Eur J Intern Med, 2020, 73: 103-104. DOI: 10.1016/j.ejim.2019.12.030.
    [16]
    Briongos-Figuero S, Estévez A, Pérez ML, et al. Prognostic role of NYHA class in heart failure patients undergoing primary prevention ICD therapy [J]. ESC Heart Fail, 2020, 7(1): 279-283. DOI: 10.1002/ehf2.12548.
    [17]
    Manolis AA, Manolis TA, Melita H, et al. Low serum albumin: a neglected predictor in patients with cardiovascular disease [J]. Eur J Intern Med, 2022, 102: 24-39. DOI: 10.1016/j.ejim.2022.05.004.
    [18]
    Puig E, Clará A, Pérez S, et al. . Resting heart rate, cardiovascular events, and all-cause mortality: the REGICOR study [J]. Eur J Prev Cardiol, 2022, 29(5): e200-e202. DOI: 10.1093/eurjpc/zwab148.
    [19]
    Cui XR, Liu DM, Geng X, et al. Predictive value of QRS fraction for cardiovascular death in patients with heart failure: a prospective cohort study in acute decompensated heart failure (heb-ADHF) [J]. Rev Cardiovasc Med, 2022, 23(7): 241. DOI: 10.31083/j.rcm2307241.
    [20]
    Zhao L, Zhao XM, Zhuang XF, et al. Hyponatremia and lower normal serum sodium levels are associated with an increased risk of all-cause death in heart failure patients [J]. Nurs Open, 2023, 10(6): 3799-3809. DOI: 10.1002/nop2.1638.
    [21]
    Kim BK, Hong SJ, Lee YJ, et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING): a randomised, open-label, non-inferiority trial [J]. Lancet, 2022, 400(10349): 380-390. DOI: 10.1016/S0140-6736(22)00916-3.
    [22]
    Tutor AW, Lavie CJ, Kachur S, et al. Updates on obesity and the obesity paradox in cardiovascular diseases [J]. Prog Cardiovasc Dis, 2023, 8: 2-10. DOI: 10.1016/j.pcad.2022.11.013.
    [23]
    Valenzuela PL, Carrera-Bastos P, Castillo-García A, et al. Obesity and the risk of cardiometabolic diseases [J]. Nat Rev Cardiol, 2023, 20(7): 475-494. DOI: 10.1038/s41569-023-00847-5.
    [24]
    Simati S, Kokkinos A, Dalamaga M, et al. Obesity paradox: fact or fiction? [J]. Curr Obes Rep, 2023, 12(2): 75-85. DOI: 10.1007/s13679-023-00497-1.
    [25]
    Horita N, Kato S, Utsunomiya D. Collider bias and the obesity paradox [J]. Nutr Rev, 2023, 81(2): 231-232. DOI: 10.1093/nutrit/nuac077.
    [26]
    Castagno D, Skali H, Takeuchi M, et al. Association of heart rate and outcomes in a broad spectrum of patients with chronic heart failure: results from the CHARM (Candesartan in heart failure: assessment of reduction in mortality and morbidity) program [J]. J Am Coll Cardiol, 2012, 59(20): 1785-1795. DOI: 10.1016/j.jacc.2011.12.044.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (38) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return