Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 29 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
HOU Yaqi, GONG Wanli, WANG Yue, YU Qi. Analysis of mitochondrial DNA copy bumber and the risk of female reproductive diseases from the perspective of two-sample Mendelian randomization[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 442-448. doi: 10.16462/j.cnki.zhjbkz.2025.04.011
Citation: HOU Yaqi, GONG Wanli, WANG Yue, YU Qi. Analysis of mitochondrial DNA copy bumber and the risk of female reproductive diseases from the perspective of two-sample Mendelian randomization[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 442-448. doi: 10.16462/j.cnki.zhjbkz.2025.04.011

Analysis of mitochondrial DNA copy bumber and the risk of female reproductive diseases from the perspective of two-sample Mendelian randomization

doi: 10.16462/j.cnki.zhjbkz.2025.04.011
Funds:

Shanxi Basic Research Program (Free Exploration category) 202303021221132

Shanxi Science and Technology Innovation Talent Team 202304051001017

More Information
  • Corresponding author: YU Qi, E-mail: yuqi@sxmu.edu.cn
  • Received Date: 2024-07-26
  • Rev Recd Date: 2025-01-27
  • Publish Date: 2025-04-10
  •   Objective  The study aims to investigate the causal relationship between mitochondrial DNA copy number (mtDNAcn) and various female reproductive system diseases, including cervical cancer, ovarian cancer, endometrial cancer, cervical polyps, polycystic ovary syndrome (PCOS), ovarian cysts, premature ovarian failure (POF), endometriosis, and uterine fibroids.  Methods  ln this study, female reproductive system diseases published in the Open GWAS database from 2015 to 2023 and FinnGen database from 2023 were selected as outcomes. A two-sample Mendelian randomization study was conducted by inverse variance weighted (IVW) method, and supplemented by weighted median analysis and MR-Egger regression analysis. Tests for horizontal pleiotropy and heterogeneity were conducted to ensure the stability of the results, and reverse analysis was also performed.  Results  Genetically predicted mtDNAcn was not associated with the risk of cervical cancer (OR=1.001, 95% CI: 0.999-1.004), ovarian cancer (OR=0.989, 95% CI: 0.702-1.394), endometrial cancer (OR=0.894, 95% CI: 0.610-1.309), cervical polyps (OR=0.999, 95% CI: 0.996-1.001), PCOS(OR=0.735, 95% CI: 0.497-1.085), ovarian cysts (OR=1.103, 95% CI: 0.917-1.327), POF (OR=1.061, 95% CI: 0.461-2.443), endometriosis (OR=1.165, 95% CI: 0.951-1.425), or uterine fibroids (OR=1.001, 95% CI: 0.997-1.006) (all P>0.05). Reverse analysis revealed an association between ovarian cysts and increased mtDNAcn levels (P=0.002), with no evidence of heterogeneity or pleiotropy.  Conclusions  Ovarian cysts are associated with an increase in mtDNAcn. The results suggest that mtDNAcn may serve as a potential biomarker for ovarian cysts, providing new insights and methods for early diagnosis and monitoring of the disease.
  • loading
  • [1]
    Cooley AM. Mitochondrial DNA analysis [J]. Methods Mol Biol, 2023, 2685: 331-349. DOI: 10.1007/978-1-0716-3295-6_20.
    [2]
    Longchamps RJ, Castellani CA, Yang SY, et al. Evaluation of mitochondrial DNA copy number estimation techniques [J]. PLoS One, 2020, 15(1): e0228166. DOI: 10.1371/journal.pone.0228166.
    [3]
    Farkas AH, Abumusa H, Rossiter B. Structural gynecological disease: fibroids, endometriosis, ovarian cysts [J]. Med Clin North Am, 2023, 107(2): 317-328. DOI: 10.1016/j.mcna.2022.10.010.
    [4]
    Crosbie EJ, Kitson SJ, McAlpine JN, et al. Endometrial cancer [J]. Lancet, 2022, 399(10333): 1412-1428. DOI: 10.1016/S0140-6736(05)67063-8.
    [5]
    Xiao YN, Bi MY, Guo HY, et al. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis [J]. EBioMedicine, 2022, 79: 104001. DOI: 10.1016/j.ebiom.2022.104001.
    [6]
    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [7]
    Zeng X, Huang Q, Long SL, et al. Mitochondrial dysfunction in polycystic ovary syndrome [J]. DNA Cell Biol, 2020, 39(8): 1401-1409. DOI: 10.1089/dna.2019.5172.
    [8]
    Chiang JL, Shukla P, Pagidas K, et al. Mitochondria in ovarian aging and reproductive longevity [J]. Ageing Res Rev, 2020, 63: 101168. DOI: 10.1016/j.arr.2020.101168.
    [9]
    Golubickaite I, Ugenskiene R, Cepaite J, et al. Mitochondria-related TFAM gene variants and their effects on patients with cervical cancer [J]. Biomed Rep, 2021, 15(6): 106. DOI: 10.3892/br.2021.1482.
    [10]
    Wan XJ, Lai XB, Huang MZ, et al. The role of mitochondrial DNA copy number in female infertility: a bidirectional two-sample Mendelian randomization study [J]. Gynecol Endocrinol, 2024, 40(1): 2444380. DOI: 10.1080/09513590.2024.2444380.
    [11]
    Long YW, Tang LH, Zhou YY, et al. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study [J]. BMC Med, 2023, 21(1): 66. DOI: 10.1186/s12916-023-02761-6.
    [12]
    Chong M, Mohammadi-Shemirani P, Perrot N, et al. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia [J]. Elife, 2022, 11: e70382. DOI: 10.7554/eLife.70382.
    [13]
    Qin P, Qin TH, Liang L, et al. The role of mitochondrial DNA copy number in cardiometabolic disease: a bidirectional two-sample Mendelian randomization study [J]. Cardiovasc Diabetol, 2024, 23(1): 45. DOI: 10.1186/s12933-023-02074-1.
    [14]
    Zhao DQ, Li GB, Bai WZ, et al. Primary biliary cirrhosis and osteoporosis: a bidirectional two-sample Mendelian randomization study [J]. Front Immunol, 2023, 14: 1269069. DOI: 10.3389/fimmu.2023.1269069.
    [15]
    Cao ZQ, Wu YD, Li QX, et al. A causal relationship between childhood obesity and risk of osteoarthritis: results from a two-sample Mendelian randomization analysis [J]. Ann Med, 2022, 54(1): 1636-1645. DOI: 10.1080/07853890.2022.2085883.
    [16]
    Zeng YJ, Cao S, Pang K, et al. Causal association between sepsis and neurodegenerative diseases: a bidirectional two-sample Mendelian randomization study [J]. J Alzheimers Dis, 2024, 97(1): 229-237. DOI: 10.3233/JAD-230954.
    [17]
    Hu W, Ma SL, Liu LL, et al. Impact of mitochondrial transcription factor A expression on the outcomes of ovarian, endometrial and cervical cancers [J]. Am J Transl Res, 2020, 12(9): 5343-5361.
    [18]
    Alston CL, Rocha MC, Lax NZ, et al. The genetics and pathology of mitochondrial disease [J]. J Pathol, 2017, 241(2): 236-250. DOI: 10.1002/path.4809.
    [19]
    Warowicka A, Kwasniewska A, Gozdzicka-Jozefiak A. Alterations in mtDNA: a qualitative and quantitative study associated with cervical cancer development [J]. Gynecol Oncol, 2013, 129(1): 193-198. DOI: 10.1016/j.ygyno.2013.01.001.
    [20]
    Wang Y, Liu VW, Xue WC, et al. Association of decreased mitochondrial DNA content with ovarian cancer progression [J]. Br J Cancer, 2006, 95(8): 1087-1091. DOI: 10.1038/sj.bjc.6603377.
    [21]
    Shukla P, Singh KK. The mitochondrial landscape of ovarian cancer: emerging insights [J]. Carcinogenesis, 2021, 42(5): 663-671. DOI: 10.1093/carcin/bgab033.
    [22]
    Cai XL, Liang C, Zhang MZ, et al. Mitochondrial DNA copy number and cancer risks: a comprehensive Mendelian randomization analysis [J]. Int J Cancer, 2024, 154(8): 1504-1513. DOI: 10.1002/ijc.34833.
    [23]
    Guerra F, Kurelac I, Cormio A, et al. Placing mitochondrial DNA mutations within the progression model of type I endometrial carcinoma [J]. Hum Mol Genet, 2011, 20(12): 2394-2405. DOI: 10.1093/hmg/ddr146.
    [24]
    Lee SH, Chung DJ, Lee HS, et al. Mitochondrial DNA copy number in peripheral blood in polycystic ovary syndrome [J]. Metabolism, 2011, 60(12): 1677-1682. DOI: 10.1016/j.metabol.2011.04.010.
    [25]
    Gómez-Durán A, Pacheu-Grau D, Martínez-Romero I, et al. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber′s hereditary optic neuropathy [J]. Biochim Biophys Acta, 2012, 1822(8): 1216-1222. DOI: 10.1016/j.bbadis.2012.04.014.
    [26]
    Andres MP, Cardena MMSG, Fridman C, et al. Polymorphisms of mitochondrial DNA control region are associated to endometriosis [J]. J Assist Reprod Genet, 2018, 35(3): 533-538. DOI: 10.1007/s10815-017-1082-4.
    [27]
    Zeber-Lubecka N, Ciebiera M, Hennig EE. Polycystic ovary syndrome and oxidative stress-from bench to bedside [J]. Int J Mol Sci, 2023, 24(18): 14126. DOI: 10.3390/ijms241814126.
    [28]
    Zhao M, Wang YZ, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance [J]. Theranostics, 2021, 11(4): 1845-1863. DOI: 10.7150/thno.50905.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (38) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return