Citation: | YUAN Yiwei, HE Hangzhi, HU Xiaojuan, DONG Tao, JIN Jie, ZHAO Hui, ZHANG Yanbo. Application of counterfactual explanation framework in predictive models for treatment outcomes in acute exacerbation of chronic obstractive pulmonary disease patients[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 461-467. doi: 10.16462/j.cnki.zhjbkz.2025.04.014 |
[1] |
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)[J]. 中华全科医师杂志, 2024, 23(6): 600-624. DOI: 10.3760/cma.j.cn114798-20240326-00174.
Chinese Medical Association, Chinese Medical Association Publishing House, Chinese Society of General Practice, et al. Chinese guideline for management of chronic obstructive pulmonary disease in primary care (2024)[J]. Chin J Gen Pract, 2024, 23(6): 600-624. DOI: 10.3760/cma.j.cn114798-20240326-00174.
|
[2] |
Venkatesan P. GOLD COPD report: 2024 update[J]. Lancet Respir Med, 2024, 12(1): 15-16. DOI: 10.1016/s2213-2600(23)00461-7.
|
[3] |
Kundu S. AI in medicine must be explainable[J]. Nat Med, 2021, 27(8): 1328. DOI: 10.1038/s41591-021-01461-z.
|
[4] |
Stiglic G, Kocbek P, Fijacko N, et al. Interpretability of machine learning-based prediction models in healthcare[J]. Data Mining And Knowledge Discover, 2020, 10(5): e1379. DOI: 10.1002/widm.1379.
|
[5] |
Ushida K, Shimizu A, Hori S, et al. Hospital frailty risk score predicts outcomes in chronic obstructive pulmonary disease exacerbations[J]. Arch Gerontol Geriatr, 2022, 100: 104658. DOI: 10.1016/j.archger.2022.104658.
|
[6] |
Hilton CB, Milinovich A, Felix C, et al. Personalized predictions of patient outcomes during and after hospitalization using artificial intelligence[J]. NPJ Digital Medicine, 2020, 3: 51. DOI: 10.1038/s41746-020-0249-z.
|
[7] |
李少凡, 李莉芳, 何航帜, 等. 慢性阻塞性肺疾病急性加重住院患者出院状态预测研究[J]. 中华疾病控制杂志, 2024, 28(6): 685-690. DOI: 10.16462/j.cnki.zhjbkz.2024.06.011.
Li SF, Li LF, He HZ, et al. Predictive study on discharge status of hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Chin J Dis Control Prev, 2024, 28(6): 685-690. DOI: 10.16462/j.cnki.zhjbkz.2024.06.011.
|
[8] |
Bloom CI, Ricciardi F, Smeeth L, et al. Predicting COPD 1-year mortality using prognostic predictors routinely measured in primary care[J]. BMC Med, 2021, 17(1): 73. DOI: 10.3310/pgfar09130.
|
[9] |
Bonomo M, Hermsen MG, Kaskovich S, et al. Using machine learning to predict likelihood and cause of readmission after hospitalization for chronic obstructive pulmonary disease exacerbation[J]. Int J Chron Obstruc Pulmon Dis, 2022, 17: 2701-2709. DOI: 10.2147/COPD.S379700.
|
[10] |
Kor CT, Li YR, Lin PR, et al. Explainable machine learning model for predicting first-time acute exacerbation in patients with chronic obstructive pulmonary disease[J]. J Pers Med, 2022, 12(2): 228. DOI: 10.3390/jpm12020228.
|
[11] |
Charlson ME, Carrozzino D, Guidi J, et al. Charlson comorbidity index: a critical review of clinimetric properties[J]. Psychother Psychosom, 2022, 91(1): 8-35. DOI: 10.1159/000521288.
|
[12] |
慢性阻塞性肺疾病急性加重诊治专家组. 慢性阻塞性肺疾病急性加重诊治中国专家共识(2023年修订版)[J]. 国际呼吸杂志, 2023, 43(2): 132-149. DOI: 10.3760/cma.j.cn131368-20221123-01066.
Expert Group for the Diagnosis and Treatment of Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Chinese expert consensus on the diagnosis and treatment of acute exacerbations of chronic obstructive pulmonary disease(revised version 2023)[J]. Int J Respir, 2023, 43(2): 132-149. DOI: 10.3760/cma.j.cn131368-20221123-01066.
|
[13] |
Marcinkevičs R, Vogt JE. Interpretable and explainable machine learning: a methods-centric overview with concrete examples[J]. Data Mining And Knowledge Discover, 2023, 13(3): e1493. DOI: 10.1002/widm.1493.
|
[14] |
Zeng SY, Arjomandi M, Luo G. Automatically explaining machine learning predictions on severe chronic obstructive pulmonary disease exacerbations: retrospective cohort study[J]. JMIR Med Inform, 2022, 10(2): e33043. DOI: 10.2196/33043.
|
[15] |
Mothilal KR, Sharma A, Tan C. Explaining machine learning classifiers through diverse counterfactual explanations[C]. Microsoft Research India; Microsoft Research India; University of Colorado Boulder, 2020.
|