Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 29 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
ZHANG Daqian, QU Yimin, XU Zhongying, LI Zuowei, MA Haihui, YE Qi, JIANG Yu. Risk assessment of early pregnancy depression based on automated retinal image analysis technology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 473-480. doi: 10.16462/j.cnki.zhjbkz.2025.04.016
Citation: ZHANG Daqian, QU Yimin, XU Zhongying, LI Zuowei, MA Haihui, YE Qi, JIANG Yu. Risk assessment of early pregnancy depression based on automated retinal image analysis technology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(4): 473-480. doi: 10.16462/j.cnki.zhjbkz.2025.04.016

Risk assessment of early pregnancy depression based on automated retinal image analysis technology

doi: 10.16462/j.cnki.zhjbkz.2025.04.016
Funds:

Naional Natural Science Foundation of China 82404400

More Information
  • Corresponding author: JIANG Yu, E-mail: jiangyu@pumc.edu.cn
  • Received Date: 2025-01-07
  • Rev Recd Date: 2025-03-13
  • Publish Date: 2025-04-10
  •   Objective  This study aimed to explore the use of machine learning-based retinal image analysis techniques for risk assessment of early pregnancy depression.  Methods  From May 2023 to May 2024, a total of 936 pregnant women were recruited at Tongzhou District Maternal and Child Health Hospital, Beijing. Bilateral retinal images were captured during their first trimester of pregnancy, and maternal depressive symptoms were assessed using the Chinese version of the Edinburgh postnatal depression scale (EPDS). A case-control matching was performed with an age difference of ±2 years, maintaining a ratio between 1∶1 and 1∶4. Conventional retinal features were calculated using automated retinal image analysis techniques, and specific image features related to early pregnancy depression were extracted using a convolutional neural network model. Modeling was conducted using a logistic regression model, with model performance evaluated via ten-fold cross-validation.  Results  A total of 449 subjects were included in the analysis, with 92 cases in the early pregnancy depression group. The retinal venous branching angle (69.36±2.17) and venous branching coefficient (0.83±0.01) in the depression group were both lower than those in the non-depression group (69.95±2.00, t=2.47, P=0.014; 0.84±0.01, t=2.56, P=0.011). The area under the receiver operating characteristic curve for the risk assessment model based on retinal features was 0.995 (95% CI: 0.990-0.999), with a sensitivity of 0.978, a specificity of 0.958.  Conclusions  Automated retinal image analysis techniques can accurately identify early pregnancy depression, providing strong support for early intervention and treatment.
  • loading
  • [1]
    Yu M, Li H, Xu DR, et al. Trajectories of perinatal depressive symptoms from early pregnancy to six weeks postpartum and their risk factors-a longitudinal study[J]. J Affect Disord, 2020, 275: 149-156. DOI: 10.1016/j.jad.2020.07.005.
    [2]
    Jahan N, Went TR, Sultan W, et al. Untreated depression during pregnancy and its effect on pregnancy outcomes: a systematic review[J]. Cureus, 2021, 13(8): e17251. DOI: 10.7759/cureus.17251.
    [3]
    杨业环, 黄星, 孙梦云, 等. 中国孕产妇不同时点抑郁状态转归及持续抑郁状态影响因素分析[J]. 中华流行病学杂志, 2022, 43(1): 58-64. DOI: 10.3760/cma.j.cn112338-20210628-00502.

    Yang YH, Huang X, Sun MY, et al. Analysis on depression state outcomes and influencing factors of persistent depression in pregnant and perinatal women in China[J]. Chin J Epidemio, 2022, 43(1): 58-64. DOI: 10.3760/cma.j.cn112338-20210628-00502.
    [4]
    卢永收. 孕早期孕妇抑郁状况及影响因素分析[J]. 妇儿健康导刊, 2024, 3(15): 195-199.

    Lu YS. Analysis of depression status and influencing factors of pregnant women in the early pregnancy[J]. Journal of Women and Children's Health Guide, 2024, 3(15): 195-199.
    [5]
    王瑞凤, 王静雯, 吴燕, 等. 不同孕期焦虑或抑郁对不良出生结局和婴儿身心发育影响的前瞻性研究[J]. 中国计划生育学杂志, 2024, 32(6): 1260-1265. DOI: 10.3969/j.issn.1004-8189.2024.06.008.

    Wang RF, Wang JW, Wu Y, et al. Influence of the anxiety and depression of pregnant women during different stages of pregnancy on their adverse pregnancy outcomes and their infant psychophysical development: a prospective study[J]. Chin J Fam Plann, 2024, 32(6): 1260-1265. DOI: 10.3969/j.issn.1004-8189.2024.06.008.
    [6]
    Sergi MR, Saggino A, Balsamo M, et al. Risk factors of the antenatal depression in a sample of Italian pregnant women: a preliminary study[J]. BMC Pregnancy Childbirth, 2024, 24(1): 689. DOI: 10.1186/s12884-024-06704-8.
    [7]
    王明欢, 李玉红, 袁德慧, 等. 妊娠早期女性非稳态负荷水平与抑郁的相关性研究[J]. 中国全科医学, 2023, 26(21): 2609-2613. DOI: 10.12114/j.issn.1007-9572.2023.0017.

    Wang MH, Li YH, Yuan DH, et al. Correlation between allostatic load level and depression among women in early pregnancy[J]. Chin Gen Pract, 2023, 26(21): 2609-2613. DOI: 10.12114/j.issn.1007-9572.2023.0017.
    [8]
    Zhang ZW, Deng C, Paulus YM. Advances in structural and functional retinal imaging and biomarkers for early detection of diabetic retinopathy[J]. Biomedicines, 2024, 12(7): 1405. DOI: 10.3390/biomedicines12071405.
    [9]
    Chaikijurajai T, Ehlers JP, Wilson Tang WH. Retinal microvasculature: a potential window into heart failure prevention[J]. JACC Heart Fail, 2022, 10(11): 785-791. DOI: 10.1016/j.jchf.2022.07.004.
    [10]
    Liu F, Chen XN, Wang Q, et al. Correlation between retinal vascular geometric parameters and pathologically diagnosed type 2 diabetic nephropathy[J]. Clin Kidney J, 2024, 17(8): sfae204. DOI: 10.1093/ckj/sfae204.
    [11]
    O'Neill RA, Maxwell AP, Kee F, et al. Association of reduced retinal arteriolar tortuosity with depression in older participants from the Northern Ireland cohort for the longitudinal study of ageing[J]. BMC Geriatr, 2021, 21(1): 62. DOI: 10.1186/s12877-021-02009-z.
    [12]
    Ha MJ, Han K, Jung Y, et al. Is retinal vein occlusion associated with depression symptoms? : a nationwide cohort study[J]. Medicine, 2021, 100(32): e26937. DOI: 10.1097/MD.0000000000026937.
    [13]
    Sadykov E, Hosak L, Stepanov A, et al. Retinal microvascular abnormalities in major depression[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2024, 168(2): 147-155. DOI: 10.5507/bp.2023.026.
    [14]
    Yang JC, Jiang Y, Qu YM, et al. Factor structure and longitudinal measurement invariance of Edinburgh postnatal depression scale during the whole perinatal period: a multicenter cohort study in China[J]. BMC Public Health, 2025, 25(1): 182. DOI: 10.1186/s12889-024-21213-1.
    [15]
    Huang LL, Shen Q, Fang QY, et al. Effects of Internet-based support program on parenting outcomes for primiparous women: a pilot study[J]. Int J Environ Res Public Health, 2021, 18(9): 4402. DOI: 10.3390/ijerph18094402.
    [16]
    Stén G, Ayers S, Malmquist A, et al. Assessment of maternal posttraumatic stress disorder following childbirth: Psychometric properties of the Swedish version of city birth trauma scale[J]. Psychol Trauma, 2023, 15(7): 1153-1163. DOI: 10.1037/tra0001465.
    [17]
    中华医学会妇产科学分会产科学组. 围产期抑郁症筛查与诊治专家共识[J]. 中华妇产科杂志, 2021, 56(8): 521-527. DOI: 10.3760/cma.j.cn112141-20210115-00022.

    Obstetrics Subgroup, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association. Experts consensus on screening and diagnosis of perinatal depression[J]. Chin J Obstet Gynecol, 2021, 56(8): 521-527. DOI: 10.3760/cma.j.cn112141-20210115-00022.
    [18]
    Shi CY, Lee J, Wang GC, et al. Assessment of image quality on color fundus retinal images using the automatic retinal image analysis[J]. Sci Rep, 2022, 12(1): 10455. DOI: 10.1038/s41598-022-13919-2.
    [19]
    Gao Y, Xu LJ, He N, et al. A narrative review of retinal vascular parameters and the applications (part I): Measuring methods[J]. Brain Circ, 2023, 9(3): 121-128. DOI: 10.4103/bc.bc_8_23.
    [20]
    Matei N, Leahy S, Blair NP, et al. Retinal vascular physiology biomarkers in a 5XFAD mouse model of Alzheimer's disease[J]. Cells, 2022, 11(15): 2413. DOI: 10.3390/cells11152413.
    [21]
    Shi XH, Dong L, Zhang RH, et al. Relationships between quantitative retinal microvascular characteristics and cognitive function based on automated artificial intelligence measurements[J]. Front Cell Dev Biol, 2023, 11: 1174984. DOI: 10.3389/fcell.2023.1174984.
    [22]
    Karna S. Commentary: eye as a window to the brain[J]. Indian J Ophthalmol, 2020, 68(4): 563-564. DOI: 10.4103/ijo.IJO_2069_19.
    [23]
    Yamada R, Fujii T, Hattori K, et al. Discrepancy between clinician-rated and self-reported depression severity is associated with adverse childhood experience, autistic-like traits, and coping styles in mood disorders[J]. Clin Psychopharmacol Neurosci, 2023, 21(2): 296-303. DOI: 10.9758/cpn.2023.21.2.296.
    [24]
    Bai JH, Wan ZQ, Li P, et al. Accuracy and feasibility with AI-assisted OCT in retinal disorder community screening[J]. Front Cell Dev Biol, 2022, 10: 1053483. DOI: 10.3389/fcell.2022.1053483.
    [25]
    Wang Y, Li C, Liu L, et al. Association of retinal neurovascular impairment with disease severity in patients with major depressive disorder: an optical coherence tomography angiography study[J]. Psychol Res Behav Manag, 2024, 17: 1573-1585. DOI: 10.2147/PRBM.S443146.
    [26]
    Menon NJ, Sun C, Chhina J, et al. Cerebrovascular dysfunction and depressive symptoms in preclinical models: insights from a scoping review[J]. J Appl Physiol, 2024, 136(6): 1352-1363. DOI: 10.1152/japplphysiol.00031.2024.
    [27]
    陈淼, 孙静. 孕产期抑郁的识别与治疗进展[J]. 临床精神医学杂志, 2021, 31(2): 159-162. DOI: 10.3969/j.issn.1005-3220.2021.02.022.

    Chen M, Sun J. Recognition and treatment progress for depression during pregnant period[J]. J Clin Psychiatry, 2021, 31(2): 159-162. DOI: 10.3969/j.issn.1005-3220.2021.02.022.
    [28]
    Al Rawahi A, Al Kiyumi MH, Al Kimyani R, et al. The effect of antepartum depression on the outcomes of pregnancy and development of postpartum depression: a prospective cohort study of Omani women[J]. Sultan Qaboos Univ Med J, 2020, 20(2): e179-e186. DOI: 10.18295/squmj.2020.20.02.008.
    [29]
    罗鑫宇, 焦国硕, 修莉芸, 等. 孕期生活事件, 社会支持与孕妇心理健康和幸福感的关系[J]. 中国健康心理学杂志, 2020, 28(12): 1761-1766. DOI: 10.13342/j.cnki.cjhp.2020.12.001.

    Luo XY, Jiao GS, Xiu LY, et al. Effects of pregnancy life events and social support on the mental health and well-being of pregnant women[J]. China Journal of Health Psychology, 2020, 28(12): 1761-1766. DOI: 10.13342/j.cnki.cjhp.2020.12.001.
    [30]
    Kjeldsen MZ, Bricca A, Liu XQ, et al. Family history of psychiatric disorders as a risk factor for maternal postpartum depression: a systematic review protocol[J]. Syst Rev, 2022, 11(1): 68. DOI: 10.1186/s13643-022-01952-1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (22) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return