• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类风湿性关节炎基因-基因交互作用研究进展

孙庆庆 张伟 张莉娜 邬秀娣 岑晗

孙庆庆, 张伟, 张莉娜, 邬秀娣, 岑晗. 类风湿性关节炎基因-基因交互作用研究进展[J]. 中华疾病控制杂志, 2019, 23(7): 871-876, 880. doi: 10.16462/j.cnki.zhjbkz.2019.07.025
引用本文: 孙庆庆, 张伟, 张莉娜, 邬秀娣, 岑晗. 类风湿性关节炎基因-基因交互作用研究进展[J]. 中华疾病控制杂志, 2019, 23(7): 871-876, 880. doi: 10.16462/j.cnki.zhjbkz.2019.07.025
SUN Qing-qing, ZHANG Wei, ZHANG Li-na, WU Xiu-di, CEN Han. A review of gene-gene interaction studies in rheumatoid arthritis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(7): 871-876, 880. doi: 10.16462/j.cnki.zhjbkz.2019.07.025
Citation: SUN Qing-qing, ZHANG Wei, ZHANG Li-na, WU Xiu-di, CEN Han. A review of gene-gene interaction studies in rheumatoid arthritis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(7): 871-876, 880. doi: 10.16462/j.cnki.zhjbkz.2019.07.025

类风湿性关节炎基因-基因交互作用研究进展

doi: 10.16462/j.cnki.zhjbkz.2019.07.025
基金项目: 

国家自然科学基金 81602921

详细信息
    通讯作者:

    岑晗, E-mail: cenhan@nbu.edu.cn

  • 中图分类号: R593.22

A review of gene-gene interaction studies in rheumatoid arthritis

Funds: 

National Natural Science Foundation of China 81602921

More Information
  • 摘要: 迄今为止,大样本遗传关联研究尤其是全基因组关联研究(genome-wide association study,GWAS)发现并且确认了大量与类风湿性关节炎(rheumatoid arthritis,RA)遗传易感性相关的基因/区域,但是这些已经发现的遗传因素尚不足以完全解释RA的遗传度,而基因-基因交互作用是尚未被发现的遗传度的重要组成部分。实际上,基因间交互作用研究一直是RA遗传流行病学研究的一个重要方向,这类研究为深入认识RA的遗传基础和发病生物学机制提供了重要线索,也为RA发病风险预测和疾病预防提供了科学参考依据。本文将对RA基因-基因交互作用研究进展进行综述,从而为今后开展相关研究提供参考。
  • 表  1  RA中功能相关基因之间的交互作用研究

    Table  1.   Studies of the interaction between functionally related genes in RA

    第一作者 发表时间(年) 人种 基因 研究结果
    Martínez A[35] 2006 西班牙人 NFκB1与FCRL3 NFκB1-94ins/del ATTG位点杂合子而非纯合子者中发现FCRL3-169位点与RA相关。
    Julià A[36] 2007 西班牙人 IL6与IL4I1 多因子降维法分析发现IL6 rs1800797位点与IL4I1 rs1290754位点之间存在交互作用(验证样本准确度为0.60;OR=2.23,95% CI:1.51~3.28;P < 0.02)。
    McKinney C[37] 2008 新西兰人和英国人 CCL3L1与CCR5 同时携带CCL3L1至少3个拷贝数与CCR5△32纯合子者发病风险高,但是未做相加模型交互作用的假设检验。
    Marinou I[38] 2009 英国人 SELSIL1β、IL6、TNF IL1β -511基因型为AA而非GA/GG者中SELS-105A等位基因在显性遗传模型下与RA发病相关,且层间异质性检验有统计学意义。未发现SELSIL6、TNF间存在交互作用。
    Assmann G[39] 2009 德国人 MDM2与p53 MDM2 SNP309位点与p53 P72R位点存在相乘模型交互作用。
    Marinou I[40] 2008 英国人 IL-4、IL-4R与IL-13 IL-4R Q551R位点的A等位基因在显性遗传模型下与RA的关联强度在携带IL-13-1112位点不同基因型(TT/CT/CC)的个体中存在统计学差异,然而经过校正后无统计学差异。
    Kawasaki A[41] 2010 日本人 TNFAIP3与TNIP1 未发现TNFAIP3 rs2230926位点与TNIP1 rs7708392位点之间存在相乘模型交互作用。
    Perdigones N[42] 2010 西班牙人 TNFRSF14与TNFRSF6B 第一阶段研究、第二阶段研究及合并研究均发现在TNFRSF6B rs4809330位点基因型为GG而非GA/AA者中TNFRSF14 rs668486位点G等位基因与RA发病有关,且层间异质性检验有统计学意义。
    Deshmukh HA[43] 2011 哥伦比亚人 MMEL1、CD244、KIAA1109、
    ADAD1、CDK6、C8orf13-BLK
    PHF19-TRAF1、TRAF1-C5、
    DKFZKIF5ASH2B3、
    C12orf30、CLEC16AITGAM
    CD226与CD40
    MMEL1 rs3890745位点与C80rf13-BLK rs13277113位点存在相乘模型交互作用。
    Génin E[44] 2013 法国人、日本人和西班牙人 BANK1与BLK 在欧洲人群RA中BANK1 rs3733197位点与BLK rs13277113位点存在相乘模型交互作用;在西班牙人群及欧洲人群中,BANK1 rs3733197位点G等位基因仅在BLK rs13277113位点基因型为GG者中与RA有关;多因子降维法发现在欧洲人群而非日本人群RA中BANK1 rs3733197位点与BLK rs13277113位点存在交互作用。
    Kim K[45] 2013 韩国人 IRF5与STAT4 IRF5 rs77571059位点与STAT4 rs16833215位点存在相乘模型交互作用。
    Lee SH[46] 2014 韩国人 CTLA4、CD28、CD40、CD40LGCD86 多因子降维法分析发现CD40LG -3458 T>G与CD86 -3479 T>G之间存在交互作用。
    下载: 导出CSV
  • [1] 潘海峰, 冷瑞雪, 吴国翠, 等. 重大自身免疫性疾病的流行病学研究进展[J]. 中华疾病控制杂志, 2018, 22(11): 1093-1095. DOI: 10.16462/j.cnki.zhjbkz.2018.11.001.

    Pan HF, Leng RX, Wu GC, et al. Advance in epidemiologic studies on major autoimmune diseases[J]. Chin J Dis Control Prev, 2018, 22(11): 1093-1095. DOI: 10.16462/j.cnki.zhjbkz.2018.11.001.
    [2] Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery[J]. Nature, 2014, 506(7488): 376-381. DOI: 10.1038/nature12873.
    [3] Sadee W, Hartmann K, Seweryn M, et al. Missing heritability of common diseases and treatments outside the protein-coding exome[J]. Hum Genet, 2014, 133(10): 1199-1215. DOI: 10.1007/s00439-014-1476-7.
    [4] Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis[J]. Arthritis Rheum, 1987, 30(11): 1205-1213. DOI: 10.1002/art.1780301102.
    [5] Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene[J]. Nat Rev Rheumatol, 2014, 10(10): 602-611. DOI: 10.1038/nrrheum.2014.109.
    [6] Lee AT, Li W, Liew A, et al. The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status[J]. Genes Immun, 2005, 6(2): 129-133. DOI: 10.1038/sj.gene.6364159.
    [7] Costenbader KH, Chang SC, De Vivo I, et al. Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene-environment interactions with heavy cigarette smoking[J]. Arthritis Res Ther, 2008, 10(3): 52. DOI: 10.1186/ar2421.
    [8] Morgan AW, Thomson W, Martin SG, et al. Reevaluation of the interaction between HLA-DRB1 shared epitope alleles, PTPN22, and smoking in determining susceptibility to autoantibody-positive and autoantibody-negative rheumatoid arthritis in a large UK Caucasian population[J]. Arthritis Rheum, 2009, 60(9): 2565-2576. DOI: 10.1002/art.24752.
    [9] Kallberg H, Padyukov L, Plenge RM, et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22 and smoking in two subsets of rheumatoid arthritis[J]. Am J Hum Genet, 2007, 80(5): 867-875. DOI: 10.1086/516736.
    [10] Mahdi H, Fisher BA, Källberg H, et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis[J]. Nat Genet, 2009, 41(12): 1319-1324. DOI: 10.1038/ng.480.
    [11] Montes A, Dieguez-Gonzalez R, Perez-Pampin E, et al. Particular association of clinical and genetic features with autoimmunity to citrullinated α-enolase in rheumatoid arthritis[J]. Arthritis Rheum, 2011, 63(3): 654-661. DOI: 10.1002/art.30357.
    [12] Montes A, Perez-Pampin E, Calaza M, et al. association of anti-citrullinated vimentin and anti-citrullinated α-enolase antibodies with subsets of rheumatoid arthritis[J]. Arthritis Rheum, 2012, 64(10): 3102-3110. DOI: 10.1002/art.34569.
    [13] Snir O, Gomez-Cabrero D, Montes A, et al. Non-HLA genes PTPN22, CDK6 and PADI4 are associated with specific autoantibodies in HLA-defined subgroups of rheumatoid arthritis[J]. Arthritis Res Ther, 2014, 16(4): 414. DOI: 10.1186/s13075-014-0414-3.
    [14] 常建芳, 常晓天, 上官玉梦, 等. PADI4在类风湿性关节炎发病中的作用[J]. 中华风湿病学杂志, 2007, 11(7): 432-435. DOI:10.3760/j:issn:1007-7480. 2007.07.015.

    Chang JF, Chang XT, ShangGuan YM, et al. The role of PADl4 in the pathogenesis of rheumatoid arthritis[J]. Chin J Rheumatol, 2007, 11(7): 432-435. DOI:10.3760/j:issn:1007-7480. 2007.07.015.
    [15] Kang CP, Lee HS, Ju H, et al. A functional haplotype of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans[J]. Arthritis Rheum, 2006, 54(1): 90-96. DOI: 10.1002/art.21536.
    [16] Bang SY, Han TU, Choi CB, et al. Peptidyl arginine deiminase type IV (PADI4) haplotypes interact with shared epitope regardless of anti-cyclic citrullinated peptide antibody or erosive joint status in rheumatoid arthritis: a case control study[J]. Arthritis Res Ther, 2010, 12(3): 115. DOI: 10.1186/ar3051.
    [17] Fan LY, Wang WJ, Wang Q, et al. A functional haplotype and expression of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Chinese[J]. Tissue Antigens, 2008, 72(5): 469-473. DOI: 10.1111/j.1399-0039.2008.01119.x.
    [18] Burr ML, Naseem H, Hinks A, et al. PADI4 genotype is not associated with rheumatoid arthritis in a large UK Caucasian population[J]. Ann Rheum Dis, 2010, 69(4): 666-670. DOI: 10.1136/ard.2009.111294.
    [19] Sachse C, Brockméller J, Bauer S, et al. Functional significance of a C——>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine[J]. Br J Clin Pharmacol, 1999, 47(4): 445-449. DOI:10.1046/j. 1365-2125.1999. 00898.x.
    [20] Cornelis MC, Bae SC, Kim I, et al. CYP1A2 genotype and rheumatoid arthritis in Koreans[J]. Rheumatol Int, 2010, 30(10): 1349-1354. DOI: 10.1007/s00296-009-1050-0.
    [21] Yun BR, El-Sohemy A, Cornelis MC, et al. Glutathione S-transferase M1, T1 and P1 genotypes and rheumatoid arthritis[J]. J Rheumatol, 2005, 32(6): 992-997. DOI: 10.1097/01.rhu.0000166626.68898.17.
    [22] Mikuls TR, Gould KA, Bynoté KK, et al. Anticitrullinated protein antibody (ACPA) in rheumatoid arthritis: influence of an interaction between HLA-DRB1 shared epitope and a deletion polymorphism in glutathione S-transferase in a cross-sectional study[J]. Arthritis Res Ther, 2010, 12(6): 213. DOI: 10.1186/ar3190.
    [23] Yu X, Lazarus AH. Targeting FcγRs to treat antibody-dependent autoimmunity[J]. Autoimmun Rev, 2016, 15(6): 510-512. DOI: 10.1016/j.autrev.2016.02.006.
    [24] Kyogoku C, Tsuchiya N, Matsuta K, et al. Studies on the association of Fc gamma receptor ⅡA, ⅡB, ⅢA and ⅢB polymorphisms with rheumatoid arthritis in the Japanese: evidence for a genetic interaction between HLA-DRB1 and FCGR3A[J]. Genes Immun, 2002, 3(8): 488-493. DOI: 10.1038/sj.gene.6363921.
    [25] Robinson JI, Barrett JH, Taylor JC, et al. Dissection of the FCGR3A association with RA: increased association in men and with autoantibody positive disease[J]. Ann Rheum Dis, 2010, 69(6): 1054-1057. DOI: 10.1136/ard.2009.110874.
    [26] Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC class Ⅱ gene expression by the class Ⅱ transactivator[J]. Nat Rev Immunol, 2005, 5(10): 793-806. DOI: 10.1038/nri1708.
    [27] Swanberg M, Lidman O, Padyukov L, et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction[J]. Nat Genet, 2005, 37(5): 486-494. DOI: 10.1038/ng1544.
    [28] Ronninger M, Seddighzadeh M, Eike MC, et al. Interaction analysis between HLA-DRB1 shared epitope alleles and MHC class Ⅱ transactivator CⅡTA gene with regard to risk of rheumatoid arthritis[J]. PLoS One, 2012, 7(3): e32861. DOI: 10.1371/journal.pone.0032861.
    [29] Kochi Y, Myouzen K, Yamada R, et al. FCRL3, an autoimmune susceptibility gene, has inhibitory potential on B-cell receptor-mediated signaling[J]. J Immunol, 2009, 183(9): 5502-5510. DOI: 10.4049/jimmunol.0901982.
    [30] Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities[J]. Nat Genet, 2005, 37(5): 478-485. DOI: 10.1038/ng1540.
    [31] Newman WG, Zhang Q, Liu X, et al. Rheumatoid arthritis association with the FCRL3-169C polymorphism is restricted to PTPN221858T-homozygous individuals in a Canadian population[J]. Arthritis Rheum, 2006, 54(12): 3820-3827. DOI: 10.1002/art.22270.
    [32] Eyre S, Bowes J, Potter C, et al. Association of the FCRL3 gene with rheumatoid arthritis: a further example of population specificity[J]. Arthritis Res Ther, 2006, 8(4): R117. DOI: 10.1186/ar2006.
    [33] Thabet MM, Wesoly J, Slagboom PE, et al. FCRL3 promoter 169 CC homozygosity is associated with susceptibility to rheumatoid arthritis in Dutch Caucasians[J]. Ann Rheum Dis, 2007, 66(6): 803-806. DOI: 10.1136/ard.2006.064949.
    [34] Begovich AB, Chang M, Schrodi SJ. Meta-analysis evidence of a differential risk of the FCRL3-169T——>C polymorphism in white and East Asian rheumatoid arthritis patients[J]. Arthritis Rheum, 2007, 56(9): 3168-3171. DOI: 10.1002/art.22857.
    [35] Martínez A, Sánchez E, Valdivia A, et al. Epistatic interaction between FCRL3 and NFkappaB1 genes in Spanish patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2006, 65(9): 1188-1191. DOI: 10.1136/ard.2005.048454.
    [36] Julià A, Moore J, Miquel L, et al. Identification of a two-loci: epistatic interaction associated with susceptibility to rheumatoid arthritis through reverse engineering and multifactor dimensionality reduction[J]. Genomics, 2007, 90(1): 6-13. DOI: 10.1016/j.ygeno.2007.03.011.
    [37] McKinney C, Merriman ME, Chapman PT, et al. Evidence for an influence of chemokine ligand 3-like 1(CCL3L1) gene copy number on susceptibility to rheumatoid arthritis[J]. Ann Rheum Dis, 2008, 67(3): 409-413. DOI: 10.1136/ard.2007.075028.
    [38] Marinou I, Walters K, Dickson MC, et al. Evidence of epistasis between interleukin 1 and selenoprotein-S with susceptibility to rheumatoid arthritis[J]. Ann Rheum Dis, 2009, 68(9): 1494-1497. DOI: 10.1136/ard.2008.090001.
    [39] Assmann G, Voswinkel J, Mueller M, et al. Association of rheumatoid arthritis with Mdm2 SNP309 and genetic evidence for an allele-specific interaction between MDM2 and p53 P72R variants: a case control study[J]. Clin Exp Rheumatol, 2009, 27(4): 615-619. DOI: 10.1186/1471-2474-10-78.
    [40] Marinou I, Till SH, Moore DJ, et al. Lack of association or interactions between the IL-4, IL-4Ralpha, IL-13 genes and rheumatoid arthritis[J]. Arthritis Res Ther, 2008, 10(4): R80. DOI: 10.1186/ar2454.
    [41] Kawasaki A, Ito S, Furukawa H, et al. association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study[J]. Arthritis Res Ther, 2010, 12(5): R174. DOI: 10.1186/ar3134.
    [42] Perdigones N, Vigo AG, Lamas JR, et al. Evidence of epistasis between TNFRSF14 and TNFRSF6B polymorphisms in patients with rheumatoid arthritis[J]. Arthritis Rheum, 2010, 62(3): 705-710. DOI: 10.1002/art.27292.
    [43] Deshmukh HA, Maiti AK, Kim-Howard XR, et al. Evaluation of 19 autoimmune disease associated with rheumatoid arthritis in a Colombian population: evidence for replication and gene-gene interaction[J]. J Rheumatol, 2011, 38(9): 1866-1870. DOI: 10.3899/jrheum.110199.
    [44] Génin E, Coustet B, Allanore Y, et al. Epistatic interaction between BANK1 and BLK in rheumatoid arthritis: results from a large trans-ethnic meta-analysis[J]. PLoS One, 2013, 8(4): e61044. DOI: 10.1371/journal.pone.0061044.
    [45] Kim K, Cho SK, Han TU, et al. A redundant epistatic interaction between IRF5 and STAT4 of the type I interferon pathway in susceptibility to lupus and rheumatoid arthritis[J]. Lupus, 2013, 22(13): 1336-1340. DOI: 10.1177/0961203313504479.
    [46] Lee SH, Lee EB, Shin ES, et al. The interaction between allelic variants of CD86 and CD40LG: a common risk factor of allergic asthma and rheumatoid arthritis[J]. Allergy Asthma Immunol Res, 2014, 6(2): 137-141. DOI: 10.4168/aair.2014.6.2.137.
  • 加载中
表(1)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  183
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-06
  • 修回日期:  2019-05-06
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回