Time series analysis and spatial autocorrelation analysis of dengue data in China from 2011 to 2018
-
摘要:
目的 了解2011-2018年我国登革热疫情时空分布特征,对2019年我国登革热的发病情况进行预测。 方法 基于中国疾病预防控制信息系统中2011-2018年我国登革热的病例数据,借助R 3.6.0软件,使用自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA)对登革热的发病趋势进行描述和预测。基于国家人口与健康科学数据共享服务平台提供的2011-2016年全国以及各省市登革热发病率、发病人数数据,采用GeoDa 1.12软件进行全局、局部空间自相关分析,确定登革热时空热点区域。 结果 预测2019年全年登革热发病数为14 302人。2012年(Moran's I=-0.088,P=0.037)、2013年(Moran's I=-0.121,P=0.040)和2014(Moran's I=-0.076,P=0.045)年全国登革热发病呈现全局空间负相关关系,2016年(Moran's I=0.078,P=0.048)登革热发病呈现全局空间正相关关系。局部自相关分析结果显示,登革热发病高聚集区域主要在我国东南沿海地区。 结论 2019年我国登革热的流行无明显波动趋势,且疫情呈空间聚集性分布。 Abstract:Objective To understand the spatial and temporal distribution characteristics of dengue fever in China from 2011 to 2018, and predict the incidence of dengue fever in China in 2019. Methods Based on the case data of dengue fever in China from 2011 to 2018 in the Chinese Disease Prevention and Control Information System, the trend of dengue fever was described and predicted by using the autoregressive integrated moving average model (ARIMA) with R 3.6.0 software. Based on the data of the incidence of dengue fever in the country, provinces and cities from 2011 to 2016 provided by the national scientific data sharing platform for population and health, global and local spatial autocorrelation analysis was performed using GeoDa 1.12 software to determine the dengue fever hotspots. Results The incidence of dengue fever was 14 302 in 2019, showing no disease outbreaks. The incidence of dengue fever in 2012(Moran's I=-0.088, P=0.037), 2013(Moran's I=-0.121, P=0.040) and 2014(Moran's I=-0.076, P=0.045) showed a global spatial negatively correlaton. In 2016(Moran's I=0.078, P=0.048), the incidence of dengue fever was positively correlated with global space. The results of local autocorrelation analysis showed that the high incidence of dengue fever was mainly in the southeast coastal areas of China. Conclusions In 2019, the epidemic of dengue fever in China showed no obvious fluctuation trend, and the epidemic situation showed spatial clustering distribution. -
表 1 模型选择表
Table 1. Model selection table
模型参数 AIC RMSE Ljung-Box P值 (010)(010) 151.250 7 0.552 8 < 0.001 (110)(010) 143.086 3 0.519 6 0.055 (011)(010) 142.591 5 0.518 0 0.018 (010)(110) 139.425 3 0.501 8 0.007 (010)(011) 126.968 5 0.441 8 0.035 (111)(010) 140.638 7 0.503 4 0.001 (010)(111) 128.722 3 0.422 1 0.018 (110)(110) 136.696 4 0.489 5 0.110 (011)(011) 125.819 9 0.439 1 0.069 (111)(110) 133.012 6 0.470 6 0.038 (111)(011) 122.575 1 0.423 9 0.085 (110)(111) 127.150 9 0.407 3 0.078 (011)(111) 126.539 9 0.406 1 0.070 (111)(111) 123.633 1 0.391 7 0.051 表 2 2019年全国登革热发病预测表
Table 2. National dengue fever morbidity forecast table in 2019
预测月份 预测值 95% CI预测值范围 2019.1 50.404 40 14.46~207.82 2019.2 48.918 14 10.71~289.03 2019.3 40.470 22 7.92~279.17 2019.4 55.526 18 9.51~463.63 2019.5 94.503 85 13.93~984.42 2019.6 137.548 70 18.02~1 714.02 2019.7 480.783 14 47.48~9 410.66 2019.8 1 689.394 40 122.16~56 570.20 2019.9 5 003.354 18 267.67~294 224.05 2019.10 5 093.178 19 258.43~332 296.33 2019.11 1 437.776 99 94.09~57 382.31 2019.12 176.286 24 17.39~3 454.57 -
[1] Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496(7446): 504-507. DOI: 10.1038/nature12060. [2] 国家卫生和计划生育委员会. 登革热诊疗指南(2014年第2版)[J]. 中药新药与临床药理, 2016, 27(1): 138-142. DOI: 10.3969/j.issn.1003-9783.2016.01.030.National Health and Family Planning Commission. Guidelines for the diagnosis and treatment of dengue fever (2nd edition, 2014)[J]. Tradit Chin Drug Res Clin Pharmacol, 2016, 27(1): 138-142. DOI: 10.3969/j.issn.1003-9783.2016.01.030. [3] 熊益权, 陈清. 1978~2014年我国登革热的流行病学分析[J]. 南方医科大学学报, 2014, 34(12): 1822-1825. DOI: 10.3969/j.issn.1673-4254.2014.12.24.Xiong YQ, Chen Q. Epidemiological analysis of dengue fever in China from 1978 to 2014[J]. J South Med Univ, 2014, 34(12): 1822-1825. DOI: 10.3969/j.issn.1673-4254.2014.12.24. [4] Lai S, Zhou H, Xiong W, et al. Changing epidemiology of human brucellosis, China, 1955-2014[J]. Emerg Infect Dis, 2017, 23(2): 184-194. DOI: 10.3201/eid2302.151710. [5] Erazo C, Pereira SM, Costa Mda C, et al. Tuberculosis and living conditions in Salvador, Brazil: a spatial analysis[J]. Rev Panam Salud Publica, 2014, 36(1): 24-30. http://europepmc.org/abstract/med/25211674 [6] 王劲峰, 廖一兰, 刘鑫. 空间数据分析教程[M]. 北京: 科学出版社, 2010.Wang JF, Liao YL, Liu X. Spatial data analysis course[M]. Beijing: Science Press, 2010. [7] 张冰冰, 姜祥坤, 张世英, 等. 空间自相关分析在探究疾病分布热点区域中的应用[J]. 山东大学学报(医学版), 2012, 50(5): 129-132. DOI:10.6040/j.issn.1671-7554.2012.05.029.Zhang BB, Jiang XK, Zhang SY, et al. Application of spatial autocorrelation analysis in exploring hotspots of disease distribution[J]. Journal of Shandong University(Natural Medicine), 2012, 50(5): 129-132. DOI: 10.6040/J.issn.1671-7554.2012.05.029. [8] Fuentes E, Fuentes M, Alarcón M, et al. Immune system dysfunction in the elderly[J]. An Acad Bras Cienc, 2017, 89(1): 285-299. DOI: 10.1590/0001-3765201720160487. [9] 王芹, 殷文武, 窦丰满, 等. 2006年中国登革热疫情监测分析[J]. 疾病监测, 2009, 24(1): 22-24. DOI: 10.3784/j.issn.1003-9961.2009.01.008.Wang Q, Yin WW, Dou FM, et al. Monitoring and analysis of dengue fever in China in 2006[J]. Dis Surveillance, 2009, 24(1): 22-24. DOI: 10.3784/j.issn.1003-9961.2009.01.008. [10] 屈志强, 黎祖秋, 汤洪洋, 等. 广西南宁市登革热媒介季节消长及其影响因素研究[J]. 中国热带医学, 2018, 18(10): 1007-1011. DOI: 10.13604/j.cnki.46-1064/r.2018.10.08.Qu ZQ, Li ZQ, Tang HY, et al. Seasonal fluctuation of dengue vector in Nanning, Guangxi, and its influencing factors[J]. China Tropical Medicine, 2018, 18(10): 1007-1011. DOI: 10.13604/j.cnki.46-1064/r.2018.10.08. [11] 易彬樘, 张治英, 徐德忠, 等. 广东省登革热流行与气候因素变化的相关性[J]. 第四军医大学学报, 2003, 24(2): 143-146. DOI: 10.3321/j.issn:1000-2790.2003.02.014.Yi BT, Zhang ZY, Xu DZ, et al. Correlation between dengue fever epidemics and changes in climatic factors in Guangdong Province. [J]. J Fourth Mil Med Univ, 2003, 24(2): 143-146. DOI: 10.3321/j.issn:1000-2790.2003.02.014. [12] 岳玉娟, 任东升, 刘起勇. 2005-2013年中国大陆登革热疫情时空分布[J]. 疾病监测, 2015, 30(7): 555-560. DOI: 10.3784/j.issn.1003-9961.2015.07.008.Yue YJ, Ren DS, Liu QY. Temporal and spatial distribution of dengue fever in mainland China from 2005 to 2013[J]. Dis Surveillance, 2015, 30(7): 555-560. DOI: 10.3784/j.issn.1003-9961.2015.07.008. [13] 宁文艳, 鲁亮, 任红艳, 等. 2004-2013年间中国登革热疫情时空变化分析[J]. 地球信息科学学报, 2015, 17(5): 614-621. DOI: 10.3724/SP.J.1047.2015.00614.Ning WY, Lu L, Ren HY, et al. Analysis of temporal and spatial changes of dengue fever in China during 2004-2013[J]. Journal of Geo-information Science, 2015, 17(5): 614-621. DOI: 10.3724/SP.J.1047.2015.00614. [14] 张红, 张恒端, 彭志强, 等. 中国2011-2015年登革热疫情分析[J]. 寄生虫与医学昆虫学报, 2017, 24(2): 118-125. DOI: 10.3969/j.issn.1005-0507.2017.02.008.Zhang H, Zhang HD, Peng ZQ, et al. Analysis of dengue fever in China from 2011 to 2015[J]. Acta Parasitol Med Entomol Sin, 2017, 24(2): 118-125. DOI: 10.3969/j.issn.1005-0507.2017.02.008. [15] Li Z, Yin W, Clements A, et al. Spatiotemporal analysis of indigenous and. imported dengue fever cases in Guangdong Province, China[J]. BMC Infect Dis, 2012, 12: 132. DOI: 10.1186/1471-2334-12-132. [16] 樊景春, 吴海霞, 王君, 等. 广东省2006-2011年登革热时空分布特征[J]. 中国媒介生物学及控制杂志, 2013, 24(5): 389-391. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMSK201305003.htmFan JC, Wu HX, Wang J, et al. Temporal and spatial distribution of dengue fever in Guangdong Province from 2006 to 2011[J]. Chin J Vector Biol & Control, 2013, 24(5): 389-391. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMSK201305003.htm [17] Bateson TF, Schwartz J. Who is sensitive to the effects of particulate. air pollution on mortality? a case-crossover analysis of effect modifiers[J]. Epidemiology, 2004, 15(2): 143-149. http://www.ncbi.nlm.nih.gov/pubmed/15127905