The effect of ambient temperature on the activity influenza like illness andlaboratory-confirmed influenza in Wuxi City
-
摘要:
目的 了解无锡市气温对流感样病例和实验室确证流感病例的影响。 方法 收集无锡市2012年12月31日至2017年12月31日期间流感样病例监测数据、实验室病原监测数据及同期气象数据资料。利用分布滞后非线性模型研究气温与流感样病例和实验室确证流感病例的关系。 结果 2012-2017年无锡市流感病例监测(influenza-like illness,ILI)总ILI%为4.96%,流感检测阳性率12.28%。无锡市气温对流感样病例的累积效应曲线呈近似"U"型,低温(10℃以下)和高温(20℃以上)均影响流感样病例的发生,低温效应滞后且效应较强,高温效应出现迅速且效应短暂。对实验室确证流感病例的累积效应呈近似"L"型,主要表现为较强的低温滞后效应,10℃以下实验室确证流感发病风险较高。 结论 气温影响流感样病例和实验室确证流感病例的发病,低温是危险因素且存在滞后效应。 Abstract:Objective To evaluate the effect of ambient temperature on the activity influenza like illness (ILI) and laboratory-confirmed influenza (LAB) in Wuxi City. Methods Daily data of meteorological, ILI and detected influenza virus from 31 December 2012 to 31 December 2017 were collected. Distributed lag non-linear model (DLNM) was used to evaluate the exposure-lag-response of ILI and LAB activity to daily ambient temperature. Results During the period, the overall ILI% was 4.96% and influenza detection positive rate was 12.28% in Wuxi city. The overall cumulative association analysis suggested non-linear relationship between ambient temperature and influenza: U-shaped for ILI, while L-shaped relationship for LAB. Low temperature (<10℃) had strong and longer delay effect than hightemperature (>20℃) for ILI. The cold effect for LAB was stronger and longer delay, and the low temperature (<10℃) was risk factor for LAB. Conclusions The ambient temperature significant correlates with ILI and LAB, and low temperature might be risk factor with lag effect. -
表 1 无锡市2012-2017日流感样病例数和实验室确证流感病例与气象条件的基本情况
Table 1. The characteristics of ILIs, laboratory-confirmed influenza cases every ten thousand outpatient visits and meteorological factors during 2012-2017 in Wuxi City
变量 x±s 最小值 P25 P50 P75 最大值 流感样病例数(ILIs)(‰) 528.25±173.37 142 414 516 624 1355 实验室确证流感数(LABs) 67.63±89.71 0 9 32 93 646 平均温度(℃) 17.21±9.08 -6.10 9.10 17.90 24.40 36.00 平均气压(hpa) 1016.27±9.13 994.5 1008.25 1016.20 1023.50 1041.00 平均相对湿度(%) 72.88±13.8 27.00 64.00 74.00 83.00 100.00 降雨量(mm) 3.94±12.71 0 0 0 1.20 211.30 平均风速(m/s) 2.23±0.89 0.40 1.60 2.20 2.70 6.00 日照时数(h) 4.97±4.17 0 0 5.50 8.70 12.90 表 2 无锡市冷热效应、不同滞后天数对流感样病例和实验室确证流感病例的效应
Table 2. The cold effect and hot effect with different lag days on ILI and laboratory-confirmed influenza in Wuxi City
滞后天数(d) 流感样病例 实验室确证流感病例 冷效应 热效应 冷效应 热效应 0 1.033(0.978~1.091) 1.022(0.960~1.088) 1.190(0.913~1.551) 1.039(0.718~1.503) 1 1.008(0.985~1.031) 1.031(1.005~1.057) 1.157(1.032~1.296) 1.094(0.945~1.266) 2 0.996(0.975~1.017) 1.033(1.006~1.060) 1.120(1.008~1.244) 1.130(0.967~1.321) 3 0.995(0.972~1.018) 1.030(1.000~1.060) 1.086(0.970~1.216) 1.148(0.964~1.368) 4 1.000(0.981~1.020) 1.024(0.998~1.050) 1.062(0.964~1.170) 1.150(0.989~1.337) 5 1.010(0.994~1.027) 1.016(0.995~1.038) 1.054(0.971~1.144) 1.138(1.002~1.294) 6 1.022(1.002~1.042) 1.008(0.984~1.033) 1.068(0.970~1.175) 1.116(0.963~1.293) 7 1.031(1.008~1.055) 1.003(0.974~1.032) 1.111(0.993~1.243) 1.087(0.915~1.291) 8 1.036(1.015~1.057) 1.000(0.975~1.026) 1.194(1.080~1.322) 1.053(0.903~1.228) 9 1.032(1.014~1.051) 1.003(0.981~1.025) 1.336(1.221~1.462) 1.018(0.896~1.156) 10 1.017(0.971~1.066) 1.012(0.958~1.070) 1.564(1.245~1.964) 0.985(0.706~1.373) -
[1] Stöhr K. The global agenda on influenza surveillance and control[J]. Vaccine, 2003, 21(16): 1744-1748. DOI: 10.1016/s0264-410x(03)00065-3. [2] Ng S, Gordon A. Influenza burden and transmission in the tropics[J]. Curr Epidemiol Rep, 2015;2(2): 89-100. DOI: 10.1007/s40471-015-0038-4. [3] Lofgren E, Fefferman NH, Naumov YN, et al. Influenza seasonality: underlying causes and modeling theories[J]. J Virol, 2007, 81(11): 5429-5436. DOI: 10.1128/JVI.01680-06. [4] 黄智峰, 刘晓剑, 杨连朋, 等. 深圳市流行性感冒与气象因素的关联性分析[J]. 中华疾病控制杂志, 2017, 21(10): 1035-1043. DOI: 10.16462/j.cnki.zhjbkz.2017.10.016.Huang ZF, Liu XJ, Yang LP, et al. Association between meteorology and influenza in Shenzhen, 2011-2013[J]. Chin J Dis Control Prev, 2017, 21(10): 1035-1043. DOI: 10.16462/j.cnki.zhjbkz.2017.10.016. [5] Feng C, Li J, Sun WJ, et al. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing China[J]. Environ Health, 2016, 15: 17. DOI: 10.1186/s12940-016-0115-2. [6] 于永, 王炜翔, 周连, 等. 南京市流感样病例与气温的关系研究[J]. 环境卫生学杂志, 2015, 5(5): 414-417. DOI: 10.13421/j.cnki.hjwsxzz.2015.05.006.Yu Y, Wang WX, Zhou L, et al. Analysis on the relationship between the incidence of influenza and temperature in Nanjng[J]. Journal of Environmental Hygiene, 2015, 5(5): 414-417. DOI: 10.13421/j.cnki.hjwsxzz.2015.05.006. [7] 王金玉, 李盛, 冯亚莉, 等. 气温对兰州市流行性感冒发病滞后效应[J]. 中国公共卫生, 2019, 35(9): 1245-1249. DOI: 10.11847/zgggws1120276.Wang JY, Li S, Feng YL, et al. Lag effect of daily mean temperature on incidence of influenza among residents in Lanzhou City[J]. Chin J Public Health, 2019, 35(9): 1245-1249. DOI: 10.11847/zgggws1120276. [8] Dai Q, Ma W, Huang H, et al. The effect of ambient temperature on the activity of influenza and influenza like illness in Jiangsu Province, China[J]. Sci Total Environ, 2018, 645: 684-691. DOI: 10.1016/j.scitotenv.2018.07.065. [9] 中国疾病预防控制中心. 全国流感监测技术指南[S]. 北京: 中国疾病预防控制中心, 2011.Chinese Center for Disease Control and Prevention. National influenza monitoring technical manual[S]. Beijing: Chinese Center for Disease Control and Prevention, 2011. [10] Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models[J]. Stat Med, 2014, 33(5): 881-899. DOI: 10.1002/sim.5963. [11] Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study[J]. Lancet, 2015, 386(9991): 369-375. DOI: 10.1016/S0140-6736(14)62114-0. [12] 张静, 杨维中, 郭元吉, 等. 中国2001-2003年流行性感冒流行特征分析[J]. 中华流行病学杂志, 2004, 25(6): 461-465. doi: 10.3760/j.issn:0254-6450.2004.06.001Zhang J, Yang WZ, Guo YJ, et al. Epidemiologic characteristics of influenza in China, from 2001 to 2003[J]. Chin J Epidemiol, 2004, 25(6): 461-465. doi: 10.3760/j.issn:0254-6450.2004.06.001 [13] 王怡珺, 赵根明, 沈福杰, 等. 2011-2013年上海市黄浦区流感样病例监测结果分析[J]. 中华疾病控制杂志, 2015, 19(5): 470-473. DOI: 10.16462/j.cnki.zhjbkz.2015.05.011.Wang YJ, Zhao GM, Shen FJ, et al. Influenza like illness surveillance in Huangpu District ofShanghai City, 2011-2013[J]. Chin J Dis Control Prev, 2015, 19(5): 470-473. DOI: 10.16462/j.cnki.zhjbkz.2015.05.011. [14] Liao CM, Chang CF, Liang HM. A probabilistic transmission dynamic model to assess indoor airborne infection risks[J]. Risk Anal, 2005, 25(5): 1097-1107. DOI: 10.1111/j.1539-6924.2005.00663.x, [15] Guo Q, Dong Z, Zeng W, et al. The effects of meteorological factors on influenza among children in Guangzhou, China[J]. Influenza Other Respir Viruses, 2019, 13(2): 166-175. DOI: 10.1111/irv.12617. [16] Jusot JF, AdamouL, Collard JM. Influenza transmission during a one-year period (2009-2010) in a Sahelian city: low temperature plays a major role[J]. Influenza Other Respir Viruses, 2012, 6(2): 87-89. DOI: 10.1111/j.1750-2659.2011.00286.x. [17] Jaakkola K, Saukkoriipi A, Jokelainen J, et al. Decline in temperature and humidity increases the occurrence of influenza in cold climate[J]. Environ Health, 2014, 13: 22. DOI: 10.1186/1476-069X-13-22. [18] Eccles R. An explanation for the seasonality of acute upper respiratory tract viral infections[J]. Acta Otolaryngol, 2002, 122(2): 183-191. DOI: 10.1080/00016480252814207. [19] 陈奕, 陆蓓蓓, 劳旭影, 等. 宁波市气温与流感样病例的关系研究[J]. 环境与健康杂志, 2018, 35(4): 287-290. DOI: 10.16241/j.cnki.1001-5914.2018.04.002.Chen Y, Lu BB, Lao XY, et al. Relationship between ambient temperature and influenza-like illness in Ningbo[J]. J Environ Health, 2018, 35(4): 287-290. DOI: 10.16241/j.cnki.1001-5914.2018.04.002.