• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物信息学在分子流行病学中的应用

张鼎 赵亚双

张鼎, 赵亚双. 生物信息学在分子流行病学中的应用[J]. 中华疾病控制杂志, 2021, 25(1): 20-24. doi: 10.16462/j.cnki.zhjbkz.2021.01.005
引用本文: 张鼎, 赵亚双. 生物信息学在分子流行病学中的应用[J]. 中华疾病控制杂志, 2021, 25(1): 20-24. doi: 10.16462/j.cnki.zhjbkz.2021.01.005
ZHANG Ding, ZHAO Ya-shuang. Applications of bioinformatics in molecular epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(1): 20-24. doi: 10.16462/j.cnki.zhjbkz.2021.01.005
Citation: ZHANG Ding, ZHAO Ya-shuang. Applications of bioinformatics in molecular epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(1): 20-24. doi: 10.16462/j.cnki.zhjbkz.2021.01.005

生物信息学在分子流行病学中的应用

doi: 10.16462/j.cnki.zhjbkz.2021.01.005
详细信息
    通讯作者:

    赵亚双,E-mail:zhao_yashuang@263.net

  • 中图分类号: R181.3

Applications of bioinformatics in molecular epidemiology

More Information
  • 摘要: 分子流行病学主要是从分子水平阐明疾病发生、发展规律及其影响因素,其研究首先必须确定生物标志物。生物信息学作为一门分析生物数据的工具学科,可以分析和整合基因组学、转录组学、表观组学及蛋白组学等标志物的高通量数据。生物信息学在流行病学筛选及研究疾病易感性、病因探索、疾病诊断和预后等标志物方面发挥了重要作用。本文就生物信息学在分子流行病学研究中发挥的作用进行综述。
  • [1] 李霞, 雷健波.生物信息学[M].第2版.北京:人民卫生出版社, 2015.

    Li X, Lei JB. Bioinformatics[M]. 2nd ed. Beijing: People's Medical Publishing House, 2015.
    [2] 詹思延.流行病学[M].第7版.北京:人民卫生出版社, 2012.

    Zhan SY. Epidemiology[M]. 7th ed. Beijing: People's Medical Publishing House, 2012.
    [3] 王志富.基于候选基因策略的脓毒症遗传易感性研究[D].北京: 北京协和医学院, 2012.

    Wang ZF. Study on genetic susceptibility to sepsis based on candidate gene strategy[D]. Beijing: Peking Union Medical College, 2012.
    [4] Hogeweg P. The roots of bioinformatics in theoretical biology[J]. PLoS Comput Biol, 2011, 7(3):e1002021. DOI: 10.1371/journal.pcbi.1002021.
    [5] Sayers EW, Cavanaugh M, Clark K, et al. GenBank[J]. Nucleic Acids Res, 2020, 48(D1):D84-D86. DOI: 10.1093/nar/gkz956.
    [6] UniProt Consortium. UniProt: the universal protein knowledgebase in 2021[J]. Nucleic Acids Res, 2020:gkaa1100. DOI: 10.1093/nar/gkaa1100.
    [7] 方积乾.卫生统计学[M].第7版 北京:人民卫生出版社, 2012.

    Fang JQ. Health statistics[M]. 7th ed. Beijing: People's Medical Publishing House, 2012.
    [8] Carriço JA, Sabat AJ, Friedrich AW, et al. Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution[J]. Euro Surveill, 2013, 18(4):20382. DOI: 10.2807/ese.18.04.20382-en.
    [9] Sabat AJ, Budimir A, Nashev D, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance[J]. Euro Surveill, 2013, 18(4):20380. DOI: 10.2807/ese.18.04.20380-en.
    [10] Mellmann A, Harmsen D, Cummings CA, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology[J]. PLoS One, 2011, 6(7):e22751. DOI: 10.1371/journal.pone.0022751.
    [11] Askar M, Faber MS, Frank C, et al. Update on the ongoing outbreak of haemolytic uraemic syndrome due to Shiga toxin-producing Escherichia coli (STEC) serotype O104, Germany, May 2011[J]. Euro Surveill, 2011, 16(22):19883. DOI: 10.2807/ese.16.22.19883-en.
    [12] Frank C, Werber D, Cramer JP, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany[J]. N Engl J Med, 2011, 365(19):1771-1780. DOI: 10.1056/NEJMoa1106483.
    [13] Mellmann A, Bielaszewska M, Köck R, et al. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli[J]. Emerg Infect Dis, 2008, 14(8):1287-1290. DOI: 10.3201/eid1408.071082.
    [14] Tang XL, Wu CC, Li X, et al. On the origin and continuing evolution of SARS-CoV-2[J]. Natl Sci Rev, 2020, 7(6):1012-1023. DOI: 10.1093/nsr/nwaa036.
    [15] Hoffmann M, Luo Y, Monday SR, et al. Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States[J]. J Infect Dis, 2016, 213(4):502-508. DOI: 10.1093/infdis/jiv297.
    [16] Nightingale K, Lin KM, Ravenhill BJ, et al. High-Definition Analysis of Host Protein Stability during Human Cytomegalovirus Infection Reveals Antiviral Factors and Viral Evasion Mechanisms[J]. Cell Host Microbe, 2018, 24(3):447-460. DOI: 10.1016/j.chom.2018.07.011.
    [17] Collaborators GBD 2017 DALYs and HALE. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159):1859-1922. DOI: 10.1016/s0140-6736(18)32335-3.
    [18] Yamada Y, Kato K, Oguri M, et al. Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease[J]. Int J Mol Med, 2018, 42(5):2415-2436. DOI: 10.3892/ijmm.2018.3852.
    [19] Todd JA. Etiology of type 1 diabetes[J]. Immunity, 2010, 32(4):457-467. DOI: 10.1016/j.immuni.2010.04.001.
    [20] Chen Z, Wen W, Beeghly-Fadiel A, et al. Identifying putative susceptibility genes and evaluating their associations with somatic mutations in human cancers[J]. Am J Hum Genet, 2019, 105(3):477-492. DOI: 10.1016/j.ajhg.2019.07.006.
    [21] Barbeira AN, Dickinson SP, Bonazzola R, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics[J]. Nat Commun, 2018, 9(1):1825. DOI: 10.1038/s41467-018-03621-1.
    [22] Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping traits using reference transcriptome data[J]. Nat Genet, 2015, 47(9):1091-1098. DOI: 10.1038/ng.3367.
    [23] Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association studies[J]. Nat Genet, 2016, 48(3):245-252. DOI: 10.1038/ng.3506.
    [24] Zhu Z, Zhang F, Hu H, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets[J]. Nat Genet, 2016, 48(5):481-487. DOI: 10.1038/ng.3538.
    [25] Wu L, Shi W, Long J, et al. A transcriptome-wide association study of 229, 000 women identifies new candidate susceptibility genes for breast cancer[J]. Nat Genet, 2018, 50(7):968-978. DOI: 10.1038/s41588-018-0132-x.
    [26] Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients[J]. Nat Rev Cancer, 2011, 11(6):426-437. DOI: 10.1038/nrc3066.
    [27] Zeng C, Stroup EK, Zhang Z, et al. Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy[J]. Cancer Commun (Lond), 2019, 39(1):12. DOI: 10.1186/s40880-019-0356-x.
    [28] Luo H, Zhao Q, Wei W, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer[J]. Sci Transl Med, 2020, 12(524):eaax7533. DOI: 10.1126/scitranslmed.aax7533.
    [29] Hakimi AA, Reznik E, Lee CH, et al. An integrated metabolic atlas of clear cell renal cell carcinoma[J]. Cancer Cell, 2016, 29(1):104-116. DOI: 10.1016/j.ccell.2015.12.004.
    [30] Yu P, Lan H, Song X, et al. High expression of the SH3TC2-DT/SH3TC2 gene pair associated with FLT3 mutation and poor survival in acute myeloid leukemia: an integrated TCGA analysis[J]. Front Oncol, 2020, 10:829. DOI: 10.3389/fonc.2020.00829.
    [31] Wang P, Wu M, Tu Z, et al. Identification of RNA: 5-methylcytosine methyltransferases-related signature for predicting prognosis in glioma[J]. Front Oncol, 2020, 10:1119. DOI: 10.3389/fonc.2020.01119.
    [32] Zhu L, Wang H, Jiang C, et al. Clinically applicable 53-Gene prognostic assay predicts chemotherapy benefit in gastric cancer: a multicenter study[J]. EBioMedicine, 2020, 61:103023. DOI: 10.1016/j.ebiom.2020.103023.
    [33] Pich O, Muiños F, Lolkema MP, et al. The mutational footprints of cancer therapies[J]. Nat Genet, 2019, 51(12):1732-1740. DOI: 10.1038/s41588-019-0525-5.
    [34] Crotti S, Enzo MV, Bedin C, et al. Clinical predictive circulating peptides in rectal cancer patients treated with neoadjuvant chemoradiotherapy[J]. J Cell Physiol, 2015, 230(8):1822-1828. DOI: 10.1002/jcp.24894.
    [35] Li CX, Wheelock CE, Sköld CM, et al. Integration of multi-omics datasets enables molecular classification of COPD[J]. Eur Respir J, 2018, 51(5):1701930. DOI: 10.1183/13993003.01930-2017.
  • 加载中
计量
  • 文章访问数:  2346
  • HTML全文浏览量:  1011
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-20
  • 修回日期:  2020-12-26
  • 刊出日期:  2021-01-10

目录

    /

    返回文章
    返回