Analysis of prevalence and influencing factors of impaired fasting glucose in residents of Tangshan
-
摘要:
目的 了解唐山市地区居民空腹血糖受损(impaired fasting glucose, IFG)患病现状及影响因素,为本地区糖尿病预防及心血管危险因素控制提供理论依据。 方法 依托于唐山市慢性病及其危险因素监测专项调查,于2018年1月1日-2018年12月31日期间,采用分层随机抽样方法,对11 475例唐山市常住成年居民进行问卷调查和体格检查,检测空腹血糖水平,采用Logistic回归分析模型分析IFG的可能影响因素。 结果 共收回有效问卷10 510份,应答率为91.6%。所有调查对象中,IFG者829例,总患病率为7.89%,其中男性8.59%,女性7.04%,差异有统计学意义(χ2 =15.458, P < 0.001)。市区人群IFG患病率为10.95%,县区人群IFG患病率为6.36%(其中山区为9.56%,平原为6.55%,沿海为3.59%),差异有统计学意义(χ2 =43.340, P < 0.001)。多因素非条件Logistic回归分析模型分析显示,年龄、BMI、高血压、高脂血症、糖尿病家族史、城乡与IFG患病风险有关。 结论 唐山地区成人居民IFG患病率较高,年龄、超重、高血压、高脂血症、糖尿病家族史、城乡是IFG患病的影响因素。 Abstract:Objective To investigate the prevalence and influencing factors of impaired fasting glucose(IFG) in residents of Tangshan, and to provide evidence for the prevention and control of diabetes and cardiovascular risk factors in the region. Methods Based on the survey of chronic diseases and their risk factors in Tangshan city, 11 475 adult residents in urban and rural districts of Tangshan were randomly enrolled in this study from January 1, 2018 to December 31, 2018. All data were collected by questionnaire and physical examination. The prevalence of IFG was calculated. The Logistic regression analysis model was used to analyze the risk factors of IFG. Results A total of 10 510 valid questionnaires (91.6%) were retrieved. Among all the subjects, there were 829 cases of IFG, with a total prevalence of 7.89%. The prevalence was 8.59% for males and 7.04% for females, and the difference was statistically significant (χ2 =15.458, P < 0.001). The prevalence was 10.95% for urban residents and 6.36% for rural residents, (9.56% for residents in mountainous areas, 6.55% for residents in plain areas and 3.59% for residents in coastal areas). Multivariate unconditional Logistic regression analysis showed that age, body mass index, hypertension, hyperlipidemia, family history of diabetes, urban or rural areas were associated with the risk of IFG. Conclusions The prevalence of IFG is relatively high for adult residents in Tangshan area. Age, overweight, hypertension, hyperlipidemia, family history of diabetes and urban area are the influencing factors of IFG. -
Key words:
- Impaired fasting glucose /
- Prevalence /
- Influencing factors
-
表 1 2018年唐山市研究对象的年龄与性别构成
Table 1. The age and gender composition of research subjects in Tangshan in 2018
年龄(岁) 男 女 合计 人数 构成比(%) 人数 构成比(%) 人数 构成比(%) 18~ 1 331 23.19 1 383 28.99 2 714 25.82 35~ 954 16.62 954 20.00 1 908 18.15 45~ 1 191 20.75 1 061 22.24 2 252 21.43 55~ 1 395 24.30 922 19.33 2 317 22.05 65~ 652 11.36 342 7.17 994 9.46 ≥75 217 3.78 108 2.26 325 3.09 合计 5 740 100.00 4 770 100.00 10 510 100.00 表 2 2018年唐山市研究对象中不同因素与IFG患病率的关系
Table 2. The relationship between different factors and the prevalence of IFG in Tangshan in 2018
变量 调查人数 患病人数 患病率(%) χ2值 P值 性别 15.458 < 0.001 男 5 740 493 8.59 女 4 770 336 7.04 年龄(岁) 773.450 < 0.001 18~ 2 714 61 2.25 35~ 1 908 98 5.14 45~ 2 252 206 9.15 55~ 2 317 278 12.00 65~ 994 151 15.19 ≥75 325 35 10.77 城乡 43.340 < 0.001 市区 3 499 383 10.95 县区 7 011 446 6.36 地理环境 83.220 < 0.001 山区 2 008 192 9.56 平原 6 020 548 9.10 沿海 2 482 89 3.59 BMI(kg/m2) 211.323 < 0.001 < 18.5 615 48 7.80 18.5~ 4 035 223 5.53 24.0~ 4 083 357 8.74 ≥28.0 1 777 201 11.31 高血压 400.264 < 0.001 高血压 2 634 336 12.76 非高血压 7 876 493 6.26 高脂血症 269.172 < 0.001 高血脂 2 077 263 12.66 非高血脂 8 433 566 6.71 糖尿病家族史 12.606 0.002 有 716 64 8.94 无 9 794 765 7.81 吸烟 50.118 < 0.001 是 3 414 296 8.67 否 7 077 532 7.52 饮酒 24.733 < 0.001 是 3 436 314 9.14 否 7 027 512 7.29 服用降压药 278.210 < 0.001 是 1 127 156 13.84 否 9 258 655 7.07 服用降脂药 125.533 < 0.001 是 173 29 16.76 否 9 915 741 7.47 服用降糖药 1528.768 < 0.001 是 299 34 11.37 否 10 182 794 7.80 表 3 2018年唐山市研究对象IFG影响因素的非条件Logistic回归分析模型结果
Table 3. Unconditional Logistic regression analysis model results of factors affecting IFG in Tangshan in 2018
自变量 β值 sx Wald χ2值 P值 OR (95% CI)值 年龄(岁) 157.016 < 0.001 18~ 1.000 35~ 0.727 0.168 18.677 < 0.001 2.070(1.488~2.879) 45~ 1.299 0.155 70.564 < 0.001 3.664(2.706~4.961) 55~ 1.600 0.155 106.439 < 0.001 4.953(3.655~6.713) 65~ 1.900 0.173 120.846 < 0.001 6.685(4.764~9.380) ≥75 1.479 0.249 35.395 < 0.001 4.387(2.695~7.140) BMI(kg/m2) 37.586 < 0.001 < 18.5 1.000 18.5~ -0.269 0.188 2.051 0.152 0.764(0.529~1.104) 24.0~ 0.105 0.183 0.327 0.567 1.111(0.775~1.590) ≥28.0 0.421 0.193 4.737 0.030 1.524(1.043~2.226) 糖尿病家族史 有 0.408 0.182 5.041 0.025 1.490(1.111~1.999) 无 1.000 高血压 是 0.366 0.103 12.522 < 0.001 1.352(1.134~1.612) 否 1.000 高脂血症 是 0.400 0.104 14.827 < 0.001 1.490(1.234~1.800) 否 1.000 吸烟 是 -0.196 0.119 2.722 0.099 0.822(0.651~1.038) 否 1.000 饮酒 是 0.093 0.115 0.661 0.416 1.098(0.876~1.376) 否 1.000 性别 女 -0.135 0.119 1.279 0.258 0.874(0.691~1.104) 男 1.000 城乡 市区 0.151 0.092 2.676 0.102 1.163(0.971~1.393) 县区 1.000 服用降压药 是 0.138 0.116 1.428 0.232 1.148(0.915~1.441) 否 1.000 服用降脂药 是 0.591 0.231 6.551 0.010 1.806(1.148~2.839) 否 1.000 表 4 2018年唐山市市区研究对象IFG影响因素的非条件Logistic回归分析模型结果
Table 4. Unconditional Logistic regression analysis model results of factors affecting IFG of urban residents in Tangshan in 2018
自变量 β值 sx Wald χ2值 P值 OR (95% CI)值 年龄(岁) 63.698 < 0.001 18~ 1.000 35~ 1.160 0.549 4.474 0.034 3.191(1.089~9.352) 45~ 1.636 0.525 9.701 0.002 5.134(1.834~14.374) 55~ 2.186 0.519 17.753 < 0.001 8.900(3.219~24.603) 65~ 2.685 0.528 25.849 < 0.001 14.654(5.206~41.250) ≥75 2.488 0.571 18.984 < 0.001 12.034(3.930~36.848) BMI(kg/m2) 10.099 0.018 < 18.5 1.000 18.5~ -0.095 0.256 0.139 0.709 0.909(0.550~1.501) 24.0~ 0.294 0.248 1.405 0.236 1.342(0.825~2.181) ≥28.0 0.431 0.278 2.406 0.121 1.538(0.893~2.651) 糖尿病家族史 有 0.292 0.222 1.732 < 0.188 1.339(0.867~2.068) 无 1.000 高血压 是 0.398 0.117 11.489 < 0.001 1.489(1.183~1.875) 否 1.000 高脂血症 是 0.322 0.121 7.051 0.008 1.380(1.088~1.751) 否 1.000 吸烟 是 -0.236 0.144 2.686 0.101 0.790(0.596~1.047) 否 1.000 饮酒 是 0.073 0.142 0.264 0.607 1.075(0.815~1.420) 否 1.000 性别 女 -0.249 0.169 2.172 0.141 0.780(0.560~1.086) 男 1.000 服用降压药 是 0.142 0.169 0.698 0.403 1.152(0.827~1.606) 否 1.000 服用降脂药 是 -0.471 0.551 0.731 0.392 0.624(0.212~1.837) 否 1.000 表 5 2018年唐山市县区研究对象IFG影响因素的非条件Logistic回归分析模型结果
Table 5. Unconditional Logistic regression analysis model results of factors affecting IFG of rural residents in Tangshan in 2018
自变量 β值 sx Wald χ2值 P值 OR (95% CI)值 年龄(岁) 108.386 < 0.001 18~ 1.000 35~ 0.732 0.182 16.164 < 0.001 2.079(1.455~2.970) 45~ 1.415 0.167 71.982 < 0.001 4.116(2.968~5.707) 55~ 1.585 0.174 82.675 < 0.001 4.880(3.468~6.868) 65~ 1.587 0.216 54.168 < 0.001 4.889(3.204~7.459) ≥75 0.799 0.398 4.027 0.045 2.223(1.019~4.853) BMI(kg/m2) 30.363 < 0.001 < 18.5 1.000 18.5~ -0.589 0.276 4.534 0.033 0.555(0.323~0.954) 24.0~ -0.238 0.272 0.765 0.382 0.789(0.463~1.343) ≥28.0 0.173 0.279 0.386 0.534 1.189(0.689~2.053) 糖尿病家族史 有 0.471 0.188 6.282 0.012 1.602(1.108~2.316) 无 1.000 高血压 是 0.172 0.122 1.977 0.160 1.188(0.934~1.510) 否 1.000 高脂血症 是 0.617 0.122 25.618 < 0.001 1.854(1.460~2.355) 否 1.000 吸烟 是 -0.015 0.151 0.010 0.919 0.985(0.732~1.324) 否 1.000 饮酒 是 -0.013 0.151 0.007 0.933 0.987(0.735~1.326) 否 1.000 性别 女 0.058 0.124 0.220 0.639 1.060(0.832~1.350) 男 1.000 沿海 是 -0.762 0.124 37.674 < 0.001 0.467(0.366~0.595) 否 1.000 服用降压药 是 0.130 0.160 0.654 0.419 1.139(0.831~1.559) 否 1.000 服用降脂药 是 0.862 0.272 10.018 0.002 2.369(1.389~4.040) 否 1.000 -
[1] Zimmet P, Shi Z, El-Osta A, et al. Author Correction: Epidemic T2DM, early development and epigenetics: implications of the Chinese Famine[J]. Nat Rev Endocrinol, 2019, 15(5):312. DOI: 10.1038/s41574-019-0199-1. [2] Velmurugan G, Ramprasath T, Gilles M, et al. Gut Microbiota, Endocrine-Disrupting Chemicals, and the Diabetes Epidemic[J]. Trends Endocrinol Metab, 2017, 28(8):612-625. DOI: 10.1016/j.tem.2017.05.001. [3] Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes[J]. Lancet, 2017, 389(10085):2239-2251. DOI: 10.1016/S0140-6736(17)30058-2. [4] Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138:271-281. DOI: 10.1016/j.diabres.2018.02.023. [5] International Diabetes Federation. IDF Diabetes Atlas[M]. 8th ed. Brussels, Belgium: International Diabetes Federation, 2017. [6] 赵振平, 李镒冲, 王丽敏, 等. 2013年中国成人糖尿病前期的地理分布及相关因素分析[J].中华预防医学杂志, 2018, 52(2):158-164. DOI: 10.3760/cma.j.issn.0253-9624.2018.02.008.Zhao ZP, Li YC, Wang LM, et al. Geographical variation and related factors in prediabetes prevalence in Chinese adults in 2013[J]. Chin J Prevent Med, 2018, 52(2):158-164. DOI: 10.3760/cma.j.issn.0253-9624.2018.02.008. [7] Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J]. Diabet Med, 1998, 15(7):539-553. DOI: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO; 2-S. [8] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12):1090-1101. DOI: 10.1056/NEJMoa0908292. [9] 赵子厚, 孔祥双, 付佐娣, 等.北京平谷区居民糖尿病前期患病状况及分析[J].中国糖尿病杂志, 2019, 27(8):572-576. DOI: 10.3969/j.issn.1006-6187.2019.08.003.Zhao ZH, Kong XS, Fu ZD, et al. The prevalence of pre-diabetes in Pinggu district of Beijing suburb[J]. Chin J Diabetes, 2019, 27(8):572-576. DOI: 10.3969/j.issn.1006-6187.2019.08.003. [10] Liu X, Bragg F, Yang L, et al. Smoking and smoking cessation in relation to risk of diabetes in Chinese men and women: a 9-year prospective study of 0.5 million people[J]. Lancet Public Health, 2018, 3(4):e167-e176. DOI: 10.1016/S2468-2667(18)30026-4. [11] Gao X, Xu J, Jiang C, et al. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice[J]. Food Funct, 2015, 6(4):1117-1125. DOI: 10.1039/c5fo00007f. [12] 刘鸿雁, 刘安诺, 潘政雯, 等.老年人腰身比、皮褶厚度对IFG和糖尿病的影响研究[J].中国全科医学, 2018, 21(25):3095-3101. DOI: 10.12114/j.issn.1007-9572.2018.25.013.Liu HY, Liu AN, Pan ZW, et al. Effects of waist-to-height ratio and skinfold thickness on impaired fasting glucose and diabetes in the elderly[J]. Chin Gen Pract, 2018, 21(25):3095-3101. DOI: 10.12114/j.issn.1007-9572.2018.25.013. [13] 郭毅飞, 李敏, 王娜娜, 等.高三酰甘油性腰围表型与IFG对2型糖尿病发病的影响及二者相关性研究[J].疑难病杂志, 2015, 14(4):349-352. DOI: 10.3969/j.issn.1671-6450.2015.04.006.Guo YF, Li M, Wang NN, et al. Effect of hypertriglyceridemia waist circumference phenotype and impaired fasting glucose on the incidence of diabetes and their correlation[J]. Chin J Diffic and Compl Cas, 2015, 14(4):349-352. DOI: 10.3969/j.issn.1671-6450.2015.04.006. [14] 涂明利, 汪孝东, 张红莲, 等.铜陵县18岁以上居民慢性病患病率及影响因素调查[J].中华疾病控制杂志, 2016, 20(2):129-133. DOI: 10.16462/j.cnki.zhjbkz.2016.02.006.Tu ML, Wang XD, Zhang HL, et al. Prevalence and risk factors of chronic diseases among residents over the age of 18 in Tongling County[J]. Chin J Dis Control Prev, 2016, 20(2):129-133. DOI: 10.16462/j.cnki.zhjbkz.2016.02.006. [15] Stull AJ. Lifestyle Approaches and Glucose Intolerance[J]. Am J Lifestyle Med, 2016, 10(6):406-416. DOI: 10.1177/1559827614554186. [16] Li H, Khor CC, Fan J, et al. Genetic risk, adherence to a healthy lifestyle, and type 2 diabetes risk among 550, 000 Chinese adults: results from 2 independent Asian cohorts[J]. Am J Clin Nutr, 2020, 111(3):698-707. DOI: 10.1093/ajcn/nqz310.