• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孕妇妊娠早期的氧化三甲胺及其代谢产物与超重的关联

曹舒 冷俊宏 李卫芹 房中则 杨西林 霍晓旭

曹舒, 冷俊宏, 李卫芹, 房中则, 杨西林, 霍晓旭. 孕妇妊娠早期的氧化三甲胺及其代谢产物与超重的关联[J]. 中华疾病控制杂志, 2021, 25(2): 171-175. doi: 10.16462/j.cnki.zhjbkz.2021.02.010
引用本文: 曹舒, 冷俊宏, 李卫芹, 房中则, 杨西林, 霍晓旭. 孕妇妊娠早期的氧化三甲胺及其代谢产物与超重的关联[J]. 中华疾病控制杂志, 2021, 25(2): 171-175. doi: 10.16462/j.cnki.zhjbkz.2021.02.010
CAO Shu, LENG Jun-hong, LI Wei-qin, FANG Zhong-ze, YANG Xi-lin, HUO Xiao-xu. Correlation analysis on trimethylamine N-oxide and its metabolites in early pregnancy with overweight[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(2): 171-175. doi: 10.16462/j.cnki.zhjbkz.2021.02.010
Citation: CAO Shu, LENG Jun-hong, LI Wei-qin, FANG Zhong-ze, YANG Xi-lin, HUO Xiao-xu. Correlation analysis on trimethylamine N-oxide and its metabolites in early pregnancy with overweight[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(2): 171-175. doi: 10.16462/j.cnki.zhjbkz.2021.02.010

孕妇妊娠早期的氧化三甲胺及其代谢产物与超重的关联

doi: 10.16462/j.cnki.zhjbkz.2021.02.010
基金项目: 

国家自然科学基金青年科学基金 81900724

国家自然科学基金 81870549

详细信息
    通讯作者:

    霍晓旭,E-mail: huoxiaoxu@tmu.edu.cn

  • 中图分类号: R714.256

Correlation analysis on trimethylamine N-oxide and its metabolites in early pregnancy with overweight

Funds: 

Project of Youth Science Foundation of National Natural Science Foundation of China 81900724

National Natural Science Foundation of China 81870549

More Information
  • 摘要:   目的  探讨妊娠早期在不同的体重状态下,孕妇氧化三甲胺(trimethylamine N-oxide, TMAO)及其代谢产物的分布差异,并分析TMAO及其代谢产物与超重之间的关联。  方法  天津市妇女儿童保健中心于2010年10月1日-2012年8月31日在天津市建立了一个由22 302名孕妇组成的妊娠队列,随后建立了以妊娠糖尿病(gestational diabetes mellitus, GDM)作为目标疾病的巢式病例对照研究,包括243名在怀孕24~28周发展为GDM的孕妇,同时根据(年龄±1)岁进行1:1匹配,最终纳入分析的研究对象为486名。采用液相色谱-串联质谱分析对血清TMAO及其代谢产物进行测定。将研究对象按照BMI≥24.0 kg/m2及BMI < 24.0 kg/m2分为超重组和非超重组,通过百分位数法将TMAO及其代谢产物分为高、低水平组,采用二元Logistic回归分析模型进行分析。  结果  超重组的三甲胺(trimethylamine, TMA)水平高于非超重组,差异具有统计学意义(Z=-2.747, P=0.006)。Logistic回归分析模型分析显示,未调整混杂因素时,与TMA低水平的孕妇相比,TMA≥264.5 nmol/ml时超重的OR值是1.771(95% CI: 1.193~2.629, P=0.005);调整混杂因素后,TMA≥264.5 nmol/ml时超重的OR值是1.734(95% CI: 1.063~2.827, P=0.027)。  结论  妊娠早期的TMA水平与孕妇超重具有相关性,通过调节TMAO及其代谢物的水平可能为肥胖症、糖尿病等代谢综合征的控制、治疗提供新思路。
  • 表  1  不同BMI孕妇的临床特点比较[n(%)]

    Table  1.   Clinical characteristics of pregnant women with different BMI [n(%)]

    变量 BMI < 24.0 kg/m2(n=320) BMI≥24.0 kg/m2(n=166) t/χ2/z P
    年龄(x±s, 岁) 29.0±2.9 29.6±3.2 -1.911 0.057a
    身高(x±s, cm) 163.2±4.8 163.0±4.7 0.496 0.620a
    体重(x±s, kg) 55.4±6.4 71.6±8.3 -23.797 < 0.001a
    BMI(x±s, kg/m2) 20.8±2.0 26.9±2.6 -29.073 < 0.001a
    孕周(x±s, 周) 10.1±2.0 10.2±2.2 -1.017 0.310a
    DBP(x±s, mmHg) 103.8±9.5 110.6±11.4 -6.999 < 0.001a
    SBP(x±s, mmHg) 67.8±7.2 72.0±8.6 -5.669 < 0.001a
    民族
      汉族 310(96.9) 162(97.6) 0.026 0.872b
      其他民族 10(3.1) 4(2.4)
    教育经历
      受教育>12年 274(85.6) 125(75.3) 7.926 0.005b
      受教育≤12年 46(14.4) 41(24.7)
    一级亲属糖尿病家族史
      有 22(6.9) 22(13.3) 5.400 0.02b
      无 298(93.1) 144(86.7)
    产次
      <1 303(94.7) 157(94.6) 0.003 0.960b
      ≥1 17(5.3) 9(5.4)
    既往吸烟
      是 17(5.3) 11(6.6) 0.348 0.555b
      否 303(94.7) 155(93.4)
    既往饮酒
      是 87(27.2) 42(25.3) 0.199 0.655b
      否 233(72.8) 124(74.7)
    孕早期FPG[M(P25, P75), mmol/L] 4.6(4.2, 5.0) 4.8(4.4, 5.2) 7.908 0.007c
    ALT [M(P25, P75), U/L] 16.0(11.0, 21.9) 19.0(13.0, 29.8) -3.983 < 0.001c
    注:a采用两独立样本t检验计算P值;b采用χ2检验计算P值;c采用Wilcoxon秩和检验计算P值。
    下载: 导出CSV

    表  2  不同BMI孕妇的TMAO及其代谢产物水平比较[M(P25, P75)/n(%)]

    Table  2.   Levels of TMAO and its metabolites in pregnant women with different BMI [M(P25, P75)/n(%)]

    TMAO及其代谢产物(nmol/ml) BMI < 24.0 kg/m2 BMI≥24.0 kg/m2 χ2/z P
    TMAO 15.7(9.0, 22.5) 13.2(8.3, 21.8) -1.332 0.183
       < 22.3 239(74.7) 126(75.9) 0.086 0.769
      ≥22.3 81(25.3) 40(24.1)
    胆碱 134.2(95.6, 184.9) 129.8(92.8, 184.7) -0.114 0.909
       < 184.7 240(75.0) 125(75.3) 0.005 0.942
      ≥184.7 80(25.0) 41(24.7)
    甜菜碱 263.4(218.0, 324.8) 247.8(205.2, 306.5) -2.189 0.029
       < 318.5 233(72.8) 132(79.5) 2.628 0.105
      ≥318.5 87(27.2) 34(20.5)
    肉碱 171.6(121.5, 225.8) 146.8(116.5, 203.4) -1.807 0.071
       < 224.4 236(73.7) 129(77.7) 0.917 0.338
      ≥224.4 84(26.3) 37(22.3)
    TMA 147.0(81.3, 243.0) 181.7(102.3, 317.8) -2.747 0.006
       < 264.5 251(78.4) 114(68.7) 5.571 0.018
      ≥264.5 69(21.6) 52(31.3)
    下载: 导出CSV

    表  3  TMAO及其代谢物与超重的关联分析

    Table  3.   Correlation analysis of TMAO and its metabolites with overweight

    β OR(95% CI)值 P
    模型1a
      TMAO 0.065 1.068(0.690~1.651) 0.769
      胆碱 0.016 1.016(0.658~1.569) 0.942
      甜菜碱 0.371 1.450(0.924~2.274) 0.106
      肉碱 0.216 1.241(0.797~1.931) 0.339
      TMA 0.572 1.771(1.193~2.629) 0.005
    模型2b
      TMAO 0.009 1.009(0.586~1.739) 0.974
      胆碱 -0.266 0.766(0.434~1.353) 0.359
      甜菜碱 0.223 1.250(0.721~2.167) 0.427
      肉碱 0.023 1.024(0.594~1.764) 0.933
      TMA 0.590 1.803(1.118~2.907) 0.016
    模型3c
    TMAO 0.021 1.021(0.586~1.780) 0.942
      胆碱 -0.228 0.796(0.446~1.422) 0.442
      甜菜碱 0.181 1.198(0.689~2.084) 0.522
      肉碱 0.011 1.012(0.578~1.771) 0.968
      TMA 0.550 1.734(1.063~2.827) 0.027
    注:a不调整混杂因素;b调整教育水平、DBP、SBP、一级亲属糖尿病家族史、ALT;c调整教育水平、DBP、SBP、一级亲属糖尿病家族史、ALT、孕早期FPG值。
    下载: 导出CSV
  • [1] 刘红宏, 胡晓敏, 田然, 等.肠道菌群及其代谢产物与动脉粥样硬化的研究进展[J].中国循环杂志, 2017, 32(12):1237-1239. DOI: 10.3969/j.issn.1000-3614.2017.12.025.

    Liu HH, Hu XM, Tian R, et al. Research progress of intestinal flora and its metabolites and atherosclerosis[J]. Chin Circul J, 2017, 32(12):1237-1239. DOI: 10.3969/j.issn.1000-3614.2017.12.025
    [2] Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics[J]. Circ Cardiovasc Genet, 2015, 8(1):187-191. DOI: 10.1161/CIRCGENETICS.114.000219.
    [3] Janeiro MH, Ramírez MJ, Milagro FI, et al. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target[J]. Nutrients, 2018, 10(10):1398. DOI: 10.3390/nu10101398.
    [4] Tang WH, Hazen SL. Microbiome, trimethylamine N-oxide, and cardiometabolic disease[J]. Transl Res, 2017, 179:108-115. DOI: 10.1016/j.trsl.2016.07.007.
    [5] Huo X, Li J, Cao YF, et al. Trimethylamine N-oxide metabolites in early pregnancy and risk of gestational diabetes: a nested case-control study[J]. J Clin Endocrinol Metab, 2019, 104(11):5529-5539. DOI: 10.1210/jc.2019-00710.
    [6] Canyelles M, Tondo M, Cedó L, et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. Int J Mol Sci, 2018, 19(10):3228. DOI: 10.3390/ijms19103228.
    [7] Dehghan P, Farhangi MA, Nikniaz L, et al. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response meta-analysis[J]. Obes Rev, 2020, 21(5):e12993. DOI: 10.1111/obr.12993.
    [8] Schugar RC, Shih DM, Warrier M, et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue[J]. Cell Rep, 2017, 19(12):2451-2461. DOI: 10.1016/j.celrep.2017.05.077.
    [9] DiNicolantonio JJ, McCarty M, OKeefe J. Association of moderately elevated Tmethylamine-N-Oxide with cardiovascular risk: is TMAO serving as a marker for hepatic insulin resistance[J]. Open Heart, 2019, 6(1):e000890. DOI: 10.1136/openhrt-2018-000890.
    [10] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341):57-63. DOI: 10.1038/nature09922.
    [11] Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4), 217-225. DOI: 10.1016/j.cmet.2005.09.001.
    [12] Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation[J]. Cell Metab, 2013, 17(1): 49-60. DOI: 10.1016/j.cmet.2012.12.011.
    [13] Zeisel SH, Warrier M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease[J]. Annu Rev Nutr, 2017, 37:157-181. DOI: 10.1146/annurev-nutr-071816-064732.
    [14] Chávez-Talavera O, Tailleux A, Lefebvre P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7):1679-1694.e3. DOI: 10.1053/j.gastro.2017.01.055.
    [15] 马少欣, 侯珊珊, 傅继华.肝脏糖脂代谢的胰岛素信号通路研究进展[J].药学研究, 2016, 35(2):94-96. DOI: 10.13506/j.cnki.jpr.2016.02.011.

    Ma SX, Hou SS, Fu JH. Research progress of the signaling pathway in sugar and lipid metabolism in hepatocyte[J]. Pharm Res, 2016, 35(2):94-96. DOI: 10.13506/j.cnki.jpr.2016.02.011.
    [16] Heianza Y, Sun D, Li X, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial[J]. Gut, 2019, 68(2):263-270. DOI: 10.1136/gutjnl-2018-316155.
    [17] Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy[J]. Scientifica (Cairo), 2012, 2012:857516. DOI: 10.6064/2012/857516.
    [18] Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus[J]. J Clin Invest, 1999, 104(6):787-794. DOI: 10.1172/JCI7231.
    [19] Cnop M, Vidal J, Hull RL, et al. Progressive loss of β-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes[J]. Diabetes Care, 2007, 30(3):677-682. DOI: 10.2337/dc06-1834.
  • 加载中
计量
  • 文章访问数:  422
  • HTML全文浏览量:  214
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-15
  • 修回日期:  2020-11-08
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回