Epidemiological characteristics and temporal-spatial clustering of scarlet fever in Nanjing from 2014 to 2019
-
摘要:
目的 了解南京市猩红热的流行特征,探寻防控重点地区,指导科学制定防控策略和措施。 方法 采用描述流行病学方法,分析2014-2019年南京市报告的猩红热病例流行病学特征,利用简单季节指数法、回顾性时空重排扫描,探索病例季节和时空分布特征。 结果 2014-2019年南京市共报告猩红热病例1 578例,中位数为214例(120~596例),报告发病率中位数为2.55 /10万(1.47/10万~7.06/10万),2014年以来报告发病水平呈上升趋势。季节分布呈双峰特征,分别为11月至次年1月(季节指数为1.5、2.0、1.0)和4至6月(季节指数1.0、1.9、1.4)。病例年龄中位数为6岁(0~43岁),6~10岁占61.4%,3~5岁占32.1%,0~2岁占4.0%;学生占51.2%,幼托儿童占39.9%,散居儿童占7.1%。江北新区和六合区报告发病水平远高于南京市其他地区,2019年报告发病率分别为37.78/10万(265例)和27.98/10万(212例),江北新区江北人民医院和六合区中医院分别诊断报告了南京市58.8%和12.2%的病例。2014-2018年时空聚集地区为江北新区(RR=19.4, P < 0.001),2019年时空聚集地区为江北新区、六合区和栖霞区(RR=9.5, P < 0.001)。 结论 建议加强对猩红热的防控,医疗机构开展猩红热诊治的培训并提高相应的实验室检测能力; 开展专题研究,调查医疗机构猩红热诊断质量。 Abstract:Objective To analyze epidemiological characteristics of scarlet fever in Nanjing, and to explore key regions for prevention and control, in order to provide strategies and measures for control and prevention of scarlet fever. Methods Descriptive epidemiologic methods were used to analyze scarlet fever data in Nanjing from 2014 to 2019 from the Chinese Disease Surveillance Information Reporting System. Seasonal index method and time-space rescheduling scanning analysis were used to explore the seasonal distribution and spatio-temporal distribution characteristics. Results A total of 1 578 scarlet fever cases were reported in Nanjing from 2014 to 2019, the median cases was 214 (120 to 596). The median reported incidence was 2.55/100 000 (1.47/100 000 to 7.06/100 000) with increasing levels of reported incidence since 2014. The seasonal distribution showed a bimodal pattern with November to January of the following year (seasonal indexs were 1.5, 2.0 and 1.0) and April to June (seasonal indexs were 1.0, 1.9 and 1.4). The median age was 6 (0 to 43) years old. The proportion of cases aged 6 to 10 years old was 61.4%, aged 3 to 5 years old was 32.1%, and aged 0 to 2 years old was 4.0%. The proportion for students was 51.2%, for preschool children was 39.9% and for scattered children was 7.1%. The Jiangbei New Area and Luhe District had a much higher incidence level than the other districts of Nanjing. The reported incidences in 2019 of Jiangbei New Area and Luhe District were 37.78/100 000 (265 cases) and 27.98/100 000 (212 cases), respectively. Nanjing Jiangbei People's Hospital in Jiangbei New Area and Luhe Hospital of Chinese Medicine in Luhe District diagnosed 58.8% and 12.2% of the reported cases, respectively. The spatio-temporal clustering regions were Jiangbei New Area in 2014 to 2018 (RR=19.4, P < 0.001) and Jiangbei New Area, Liuhe District, and Qixia District in 2019 (RR=9.5, P < 0.001). Conclusions It's suggested to strengthen the importance and action for prevention and control of scarlet fever, and medical institutions develop training in scarlet fever diagnosis and improve development of appropriate laboratory test capacity. Special investigation should be conducted to investigate the diagnostic quality of scarlet fever in medical institutions. -
表 1 2014-2019年南京市报告猩红热病例月分布
Table 1. Monthly distribution of scarlet fever in Nanjing from 2014 to 2019
年份 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 合计 发病率(/10万) 2014 2 1 2 9 23 23 4 2 0 13 22 19 120 1.47 2015 58 14 15 18 31 23 18 3 8 9 14 31 242 2.97 2016 25 11 23 23 34 22 6 6 11 6 10 19 196 2.38 2017 8 10 29 25 40 28 9 7 4 4 8 20 192 2.32 2018 13 5 8 18 30 19 9 13 8 14 35 60 232 2.78 2019 29 15 36 44 97 69 25 15 14 38 106 108 596 7.06 合计 135 56 113 137 255 184 71 46 45 84 195 257 1 578 — 平均 22.5 9.3 18.8 22.8 42.5 30.7 11.8 7.7 7.5 14.0 32.5 42.8 21.9a 3.16 注:a为所有月份报告病例均值。 表 2 2014-2019年南京市报告猩红热病例流行特征[n(%)]
Table 2. Epidemiological characteristics of scarlet fever in Nanjing from 2014 to 2019 [n(%)]
变量 2014年
(n=120)2015年
(n=242)2016年
(n=196)2017年
(n=192)2018年
(n=232)2019年
(n=596)合计
(n=1 578)男 71(59.2) 148(61.2) 107(54.6) 127(66.1) 149(64.2) 366(61.4) 968(61.3) 年龄(岁) 0~ 4(3.3) 8(3.3) 11(5.6) 5(2.6) 14(6.0) 22(3.7) 64(4.0) 3~ 39(32.5) 66(27.3) 74(37.8) 64(33.4) 70(30.2) 193(32.4) 506(32.1) 6~ 75(62.5) 157(64.9) 107(54.6) 121(63.0) 147(63.4) 362(60.7) 969(61.4) 11~43 2(1.7) 11(4.5) 4(2.0) 2(1.0) 1(0.4) 19(3.2) 39(2.5) 人群分类 学生 59(49.2) 138(57.0) 77(39.3) 92(47.9) 127(54.7) 315(52.9) 808(51.2) 幼托儿童 50(41.7) 79(32.6) 96(49.0) 89(46.4) 83(35.8) 232(38.9) 629(39.9) 散居儿童 10(8.3) 19(7.9) 19(9.7) 11(5.7) 21(9.1) 32(5.3) 112(7.1) 其他 1(0.8) 6(2.5) 4(2.0) 0(0.0) 1(0.4) 17(2.9) 29(1.8) 地区 江北新区 65(54.2) 116(47.9) 96(49.0) 135(70.3) 142(61.2) 265(44.5) 819(51.9) 六合区 6(5.0) 43(17.8) 35(17.8) 38(19.8) 26(11.2) 212(35.6) 360(22.8) 浦口区 20(16.7) 39(16.1) 27(13.8) 1(0.5) 9(3.9) 5(0.8) 101(6.4) 其他区 29(24.1) 44(18.2) 38(19.4) 18(9.4) 55(23.7) 114(19.1) 298(18.9) 报告单位 江北人民医院 72(60.0) 172(71.1) 137(69.9) 154(80.2) 136(58.6) 257(43.1) 928(58.8) 六合区中医院 0(0.0) 5(2.1) 6(3.1) 14(7.3) 11(4.8) 156(26.2) 192(12.2) 其他医疗机构 48(40.0) 65(26.8) 53(27.0) 24(12.5) 85(36.6) 183(30.7) 458(29.0) 表 3 2014-2019年南京市报告猩红热病例时空重排扫描结果
Table 3. Spatio-temporal scanning results of scarlet fever in Nanjing from 2014 to 2019
年份(年) 聚集地区 聚集时间 报告病例数 期望病例数 RR值 LLR值 P值 2014 江北新区 10月9日-12月31日 40 2 27.3 85.8 < 0.001 2015 江北新区 1月1日-7月2日 81 10 12.2 113.8 < 0.001 2016 江北新区 1月1日-7月2日 71 8 13.8 106.1 < 0.001 2017 江北新区 2月20日-8月20日 104 8 29.1 208.3 < 0.001 2018 江北新区 8月14日-12月31日 76 8 14.8 120.6 < 0.001 2019 江北新区、六合、栖霞 10月23日-12月31日 198 30 9.5 234.7 < 0.001 -
[1] 刘贞艳, 毕振强. A群链球菌病原学与流行病学研究进展[J]. 中华流行病学杂志, 2014, 35(6): 752-754. DOI: 10.3760/cma.j.issn.0254-6450.2014.06.031.Liu ZY, Bi ZQ. A review on the advancement of etiology and epidemiology of group A Streptococcus[J]. Chin J Epidemiol, 2014, 35(6): 752-754. DOI: 10.3760/cma.j.issn.0254-6450.2014.06.031. [2] Zhang XY, Liu YC. The resurgence of scarlet fever in China[J]. Lancet Infect Dis, 2018, 18(8): 823-824. DOI: 10.1016/S1473-3099(18)30275-5. [3] Li WT, Feng RH, Li T, et al. Spatial-temporal analysis and visualization of scarlet fever in mainland China from 2004 to 2017[J]. Geospat Health, 2020, 15(1): 6-14. DOI: 10.4081/gh.2020.831. [4] Leung TN, Hon KL, Leung AK. Group A Streptococcus disease in Hong Kong children: an overview[J]. Hong Kong Med J, 2018, 24(6): 593-601. DOI: 10.12809/hkmj187275. [5] Yung CF, Thoon KC. A 12 year outbreak of scarlet fever in Singapore[J]. Lancet Infect Dis, 2018, 18(9): 942. DOI: 10.1016/S1473-3099(18)30464-X. [6] Kim JH, Cheong HK. Increasing Number of Scarlet Fever Cases, South Korea, 2011-2016[J]. Emerg Infect Dis, 2018, 24(1): 172-173. DOI: 10.3201/eid2401.171027. [7] Lamagni T, Guy R, Chand M, et al. Resurgence of scarlet fever in England, 2014-16: a population-based surveillance study[J]. Lancet Infect Dis, 2018, 18(2): 180-187. DOI: 10.1016/S1473-3099(17)30693-X. [8] Brockmann SO, Eichner L, Eichner M. Constantly high incidence of scarlet fever in Germany[J]. Lancet Infect Dis, 2018, 18(5): 499-500. DOI: 10.1016/S1473-3099(18)30210-X. [9] Walker MJ, Brouwer S. Scarlet fever makes a comeback[J]. Lancet Infect Dis, 2018, 18(2): 128-129. DOI: 10.1016/S1473-3099(17)30694-1. [10] Mao Y, He RX, Zhu B, et al. Notifiable Respiratory Infectious Diseases in China: A Spatial-Temporal Epidemiology Analysis[J]. Int J Environ Res Public Health, 2020, 17(7): 2301. DOI: 10.3390/ijerph17072301. [11] 刘维量, 寇增强, 毕振旺, 等. 山东省2011-2018年猩红热流行特征及空间聚集性分析[J]. 中华疾病控制杂志, 2020, 24(4): 438-443. DOI: 10.16462/j.cnki.zhjbkz.2020.04.014.Liu WL, Kou ZQ, Bi ZW, et al. Analysis on epidemiological characteristics and spatial clusters of scarlet fever in Shandong Province from 2011 to 2018[J]. Chin J Dis Control Prev, 2020, 24(4): 438-443. DOI: 10.16462/j.cnki.zhjbkz.2020.04.014. [12] 苏健婷, 王超, 高燕琳, 等. 北京市2007-2016年猩红热流行病学特征分析[J]. 中华疾病控制杂志, 2018, 22(8): 846-848. DOI: 10.16462/j.cnki.zhjbkz.2018.08.021.Su JT, Wang C, Gao YL, et al. Study on the epidemiological characteristics of scarlet fever in Beijing from 2007 to 2016[J]. Chin J Dis Control Prev, 2018, 22(8): 846-848. DOI: 10.16462/j.cnki.zhjbkz.2018.08.021. [13] 蔡晶, 黄淑琼, 杨雯雯, 等. 2010-2018年湖北省猩红热流行病学特征及发病趋势预测[J]. 中华疾病控制杂志, 2020, 24(2): 134-138, 150. DOI: 10.16462/j.cnki.zhjbkz.2020.02.003.Cai J, Huang SQ, Yang WW, et al. Epidemiological characteristics and trend prediction of scarlet fever in Hubei Province from 2010 to 2018[J]. Chin J Dis Control Prev, 2020, 24(2): 134-138, 150. DOI: 10.16462/j.cnki.zhjbkz.2020.02.003. [14] Liu Y, Chan TC, Yap LW, et al. Resurgence of scarlet fever in China: a 13-year population-based surveillance study[J]. Lancet Infect Dis, 2018, 18(8): 903-912. DOI: 10.1016/S1473-3099(18)30231-7. [15] You Y, Davies MR, Walker MJ, et al. Hypotheses for the resurgence of scarlet fever in China[J]. Lancet Infect Dis, 2018, 18(9): 942-943. DOI: 10.1016/S1473-3099(18)30470-5. [16] Liu S, Chan TC, Liu Y, et al. Hypotheses for the resurgence of scarlet fever in China - Authors' reply[J]. Lancet Infect Dis, 2018, 18(9): 943-944. DOI: 10.1016/S1473-3099(18)30489-4. [17] Dong Y, Wang L, Burgner DP, et al. Infectious diseases in children and adolescents in China: analysis of national surveillance data from 2008 to 2017[J]. BMJ, 2020, 369: m1043. DOI: 10.1136/bmj.m1043. [18] 孙婕, 杨雯雯, 曾令佳, 等. 2011-2016年全国6~22岁学生人群法定传染病监测数据分析[J]. 中华流行病学杂志, 2018, 39(12): 1589-1595. DOI: 10.3760/cma.j.issn.0254-6450.2018.12.010.Sun J, Yang WW, Zeng LJ, et al. Surveillance data on notifiable infectious diseases among students aged 6-22 years in China, 2011-2016[J]. Chin J Epidemiol, 2018, 39(12): 1589-1595. DOI: 10.3760/cma.j.issn.0254-6450.2018.12.010. [19] Lu Q, Wu H, Ding Z, et al. Analysis of Epidemiological Characteristics of Scarlet Fever in Zhejiang Province, China, 2004-2018[J]. Int J Environ Res Public Health, 2019, 16(18): 3454. DOI: 10.3390/ijerph16183454. [20] 陈诹, 刘丹, 朱渭萍, 等. 上海市浦东新区猩红热聚集性疫情分析[J]. 公共卫生与预防医学, 2019, 30(2): 90-92. DOI: 10.3969/j.issn.1006-2483.2019.02.022.Chen Z, Liu D, Zhu WP, et al. Analysis of epidemic situation of scarlet fever in Pudong New Area, Shanghai[J]. J Public Health Pre Med, 2019, 30(2): 90-92. DOI: 10.3969/j.issn.1006-2483.2019.02.022. [21] 马涛, 谢国祥, 孙红敏, 等. 2009-2016年南京市重症手足口病流行特征和时空聚集性分析[J]. 中华疾病控制杂志, 2018, 22(11): 1138-1143. DOI: 10.16462/j.cnki.zhjbkz.2018.11.011.Ma T, Xie GX, Sun HM, et al. Epidemiological characteristics and temporal-spatial clustering analysis of severe hand-foot-mouth disease in Nanjing from 2009 to 2016[J]. Chin J Dis Control Prev, 2018, 22(11): 1138-1143. DOI: 10.16462/j.cnki.zhjbkz.2018.11.011.