• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多基因遗传风险评分用于精准预防的研究进展

汪天培 靳光付 胡志斌 沈洪兵

汪天培, 靳光付, 胡志斌, 沈洪兵. 多基因遗传风险评分用于精准预防的研究进展[J]. 中华疾病控制杂志, 2021, 25(9): 993-997. doi: 10.16462/j.cnki.zhjbkz.2021.09.001
引用本文: 汪天培, 靳光付, 胡志斌, 沈洪兵. 多基因遗传风险评分用于精准预防的研究进展[J]. 中华疾病控制杂志, 2021, 25(9): 993-997. doi: 10.16462/j.cnki.zhjbkz.2021.09.001
WANG Tian-pei, JIN Guang-fu, HU Zhi-bin, SHEN Hong-bing. Advances in applications of polygenic risk score in precision prevention[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(9): 993-997. doi: 10.16462/j.cnki.zhjbkz.2021.09.001
Citation: WANG Tian-pei, JIN Guang-fu, HU Zhi-bin, SHEN Hong-bing. Advances in applications of polygenic risk score in precision prevention[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(9): 993-997. doi: 10.16462/j.cnki.zhjbkz.2021.09.001

多基因遗传风险评分用于精准预防的研究进展

doi: 10.16462/j.cnki.zhjbkz.2021.09.001
基金项目: 

国家自然科学基金 81872702

详细信息
    通讯作者:

    靳光付, E-mail: guangfujin@njmu.edu.cn

  • 中图分类号: R181

Advances in applications of polygenic risk score in precision prevention

Funds: 

National Natural Science Foundation of China 81872702

More Information
  • 摘要: 近年来,全基因组关联研究鉴定了大量复杂性疾病的遗传易感位点。多基因遗传风险评分通过整合多个易感位点的效应,已被证明可用于量化多种复杂性疾病的遗传风险,对于人群风险分层以及进一步实现精准医学目标存在潜在应用价值。本文介绍了多基因遗传风险评分构建及其评价方法,并就其在精准预防应用中的最新研究进展做概述。
  • [1] Buniello A, Macarthur JaL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019[J]. Nucleic Acids Res, 2019, 47(D1): D1005-D1012. DOI: 10.1093/nar/gky1120.
    [2] Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies[J]. Nat Rev Genet, 2019, 20(8): 467-484. DOI: 10.1038/s41576-019-0127-1.
    [3] Chen ZM, Lee LM, Chen JS, et al. Cohort Profile: the Kadoorie study of chronic disease in China (KSCDC)[J]. Int J Epidemiol, 2005, 34(6): 1243-1249. DOI: 10.1093/ije/dyi174.
    [4] Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data[J]. Nature, 2018, 562(7726): 203-209. DOI: 10.1038/s41586-018-0579-z.
    [5] Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations[J]. Nat Genet, 2018, 50(9): 1219-1224. DOI: 10.1038/s41588-018-0183-z.
    [6] Dai J, Lv J, Zhu M, et al. Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations[J]. Lancet Respir Med, 2019, 7(10): 881-891. DOI: 10.1016/S2213-2600(19)30144-4.
    [7] Khera AV, Chaffin M, Wade KH, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood[J]. Cell, 2019, 177(3): 587-596, e589. DOI: 10.1016/j.cell.2019.03.028.
    [8] Jin G, Lv J, Yang M, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study[J]. Lancet Oncol, 2020, 21(10): 1378-1386. DOI: 10.1016/S1470-2045(20)30460-5.
    [9] Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81(3): 559-575. DOI: 10.1086/519795.
    [10] Euesden J, Lewis CM, O'reilly PF. PRSice: polygenic risk score software[J]. Bioinformatics, 2015, 31(9): 1466-1468. DOI: 10.1093/bioinformatics/btu848.
    [11] 王铖, 戴俊程, 孙义民, 等. 遗传风险评分的原理与方法[J]. 中华流行病学杂志, 2015, 36(10): 1062-1064. DOI: 10.3760/cma.j.issn.0254-6450.2015.10.005.

    Wang C, Dai J, Sun Y, et al. Genetic risk score: principle, methods and application][J]. Chin J Epidemiol, 2015, 36(10): 1062-1064. DOI: 10.3760/cma.j.issn.0254-6450.2015.10.005.
    [12] Ma Y, Zhou X. Genetic prediction of complex traits with polygenic scores: a statistical review[J]. Trends Genet, 2021. DOI: 10.1016/j.tig.2021.06.004.
    [13] Moser G, Lee SH, Hayes BJ, et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model[J]. PLoS Genet, 2015, 11(4): e1004969. DOI: 10.1371/journal.pgen.1004969.
    [14] Zhou X, Carbonetto P, Stephens M. Polygenic modeling with bayesian sparse linear mixed models[J]. PLoS Genet, 2013, 9(2): e1003264. DOI: 10.1371/journal.pgen.1003264.
    [15] Vilhjalmsson BJ, Yang J, Finucane HK, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores-sciencedirect[J]. Am J Hum Genet, 2015, 97(4): 576-592. DOI: 10.1016/j.ajhg.2015.09.001.
    [16] Hu YM, Lu QS, Powles R, et al. Leveraging functional annotations in genetic risk prediction for human complex diseases[J]. PLoS Comput Biol, 2017, 13(6): e1005589. DOI: 10.1371/journal.pcbi.1005589.
    [17] Speed D, Balding DJ. MultiBLUP: improved SNP-based prediction for complex traits[J]. Genome Res, 2014, 24(9): 1550-1557. DOI: 10.1101/gr.169375.113.
    [18] Yang S, Zhou X. Accurate and scalable construction of polygenic scores in large biobank data sets[J]. Am J Hum Genet, 2020, 106(5): 679-693. DOI: 10.1016/j.ajhg.2020.03.013.
    [19] Mak TSH, Porsch RM, Choi SW, et al. Polygenic scores via penalized regression[J]. Genetic epidemiology, 2017, 41(6): 469-480. DOI: 10.1002/gepi.22050.
    [20] Chung W, Chen J, Turman C, et al. Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes[J]. Nat Commun, 2019, 10(1): 569. DOI: 10.1038/s41467-019-08535-0.
    [21] Moll M, Sakornsakolpat P, Shrine N, et al. Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts[J]. Lancet Respir Med, 2020, 8(7): 696-708. DOI: 10.1016/S2213-2600(20)30101-6.
    [22] Mega JL, Stitziel NO, Smith JG, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials[J]. Lancet, 2015, 385(9984): 2264-2271. DOI: 10.1016/S0140-6736(14)61730-X.
    [23] Zhu M, Wang T, Huang Y, et al. Genetic risk for overall cancer and the benefit of adherence to a healthy lifestyle[J]. Cancer Res, 2021. DOI: 10.1158/0008-5472.CAN-21-0836.
    [24] Siu AL, Force USPST. Screening for breast cancer: U.S. preventive services task force recommendation statement[J]. Ann Intern Med, 2016, 164(4): 279-296. DOI: 10.7326/M15-2886.
    [25] Pashayan N, Morris S, Gilbert FJ, et al. Cost-effectiveness and benefit-to-harm ratio of risk-stratified screening for breast cancer: a life-table model[J]. JAMA Oncol, 2018, 4(11): 1504-1510. DOI: 10.1001/jamaoncol.2018.1901.
    [26] Forgetta V, Keller-Baruch J, Forest M, et al. Development of a polygenic risk score to improve screening for fracture risk: a genetic risk prediction study[J]. PLoS Med, 2020, 17(7): e1003152. DOI: 10.1371/journal.pmed.1003152.
    [27] Vassos E, Di Forti M, Coleman J, et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis[J]. Biol Psychiatry, 2017, 81(6): 470-477. DOI: 10.1016/j.biopsych.2016.06.028.
    [28] Ward J, Graham N, Strawbridge RJ, et al. Polygenic risk scores for major depressive disorder and neuroticism as predictors of antidepressant response: meta-analysis of three treatment cohorts[J]. PloS One, 2018, 13(9): e0203896. DOI: 10.1371/journal.pone.0203896.
    [29] International Consortium on Lithium G, Amare AT, Schubert KO, et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: a genome-wide association study[J]. JAMA Psychiatry, 2018, 75(1): 65-74. DOI: 10.1001/jamapsychiatry.2017.3433.
    [30] Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report[J]. Am J Psychiatry, 2006, 163(11): 1905-1917. DOI: 10.1176/ajp.2006.163.11.1905.
    [31] 李倩, 颜财旺, 靳光付. 中国汉族人MHC区域与胃癌易感性的关联分析[J]. 中华疾病控制杂志, 2021, 25(9): 998-1002, 1019. DOI: 10.16462/j.cnki.zhjbkz.2021.09.002

    Li Q, Yan CW, Jin GF. Association between MHC region and gastric cancer susceptibility in Han Chinese[J]. Chin J Dis Control Prev, 2021, 25(9): 998-1002, 1019. DOI: 10.16462/j.cnki.zhjbkz.2021.09.002
    [32] 胡北平, 汪天培, 朱猛, 等. 血脂水平、遗传风险与男性肿瘤易感性的关联研究[J]. 中华疾病控制杂志, 2021, 25(9): 1003-1007. DOI: 10.16462/j.cnki.zhjbkz.2021.09.003

    Hu BP, Wang TP, Zhu M, et al. Association of blood lipid and genetic with cancer susceptibility in men[J]. Chin J Dis Control Prev, 2021, 25(9): 1003-1007. DOI: 10.16462/j.cnki.zhjbkz.2021.09.003
    [33] 朱梦怡, 汪天培, 朱猛, 等. C反应蛋白和遗传风险在肿瘤发病中的交互作用研究[J]. 中华疾病控制杂志, 2021, 25(9): 1008-1013. DOI: 10.16462/j.cnki.zhjbkz.2021.09.004

    Zhu MY, Wang TP, Zhu M, et al. The interaction between C-reactive protein and genetic risk in cancer[J]. Chin J Dis Control Prev, 2021, 25(9): 1008-1013. DOI: 10.16462/j.cnki.zhjbkz.2021.09.004
    [34] Wand H, Lambert SA, Tamburro C, et al. Improving reporting standards for polygenic scores in risk prediction studies[J]. Nature, 2021, 591(7849): 211-219. DOI: 10.1038/s41586-021-03243-6.
    [35] Martin AR, Kanai M, Kamatani Y, et al. Publisher correction: clinical use of current polygenic risk scores may exacerbate health disparities[J]. Nat Genet, 2021, 53(5): 763. DOI: 10.1038/s41588-021-00797-z.
  • 加载中
计量
  • 文章访问数:  714
  • HTML全文浏览量:  1619
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 修回日期:  2021-08-23
  • 网络出版日期:  2021-10-23
  • 刊出日期:  2021-09-10

目录

    /

    返回文章
    返回