• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国汉族人群MHC区域与胃癌易感性的关联

李倩 颜财旺 靳光付

李倩, 颜财旺, 靳光付. 中国汉族人群MHC区域与胃癌易感性的关联[J]. 中华疾病控制杂志, 2021, 25(9): 998-1002,1019. doi: 10.16462/j.cnki.zhjbkz.2021.09.002
引用本文: 李倩, 颜财旺, 靳光付. 中国汉族人群MHC区域与胃癌易感性的关联[J]. 中华疾病控制杂志, 2021, 25(9): 998-1002,1019. doi: 10.16462/j.cnki.zhjbkz.2021.09.002
LI Qian, YAN Cai-wang, JIN Guang-fu. Association between MHC region and gastric cancer susceptibility in Han Chinese[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(9): 998-1002,1019. doi: 10.16462/j.cnki.zhjbkz.2021.09.002
Citation: LI Qian, YAN Cai-wang, JIN Guang-fu. Association between MHC region and gastric cancer susceptibility in Han Chinese[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(9): 998-1002,1019. doi: 10.16462/j.cnki.zhjbkz.2021.09.002

中国汉族人群MHC区域与胃癌易感性的关联

doi: 10.16462/j.cnki.zhjbkz.2021.09.002
基金项目: 

国家自然科学基金 81872702

国家自然科学基金 82003534

江苏省自然科学基金 BK20200674

详细信息
    通讯作者:

    靳光付, E-mail: guangfujin@njmu.edu.cn

  • 中图分类号: R181;R735.2

Association between MHC region and gastric cancer susceptibility in Han Chinese

Funds: 

National Natural Science Foundation of China 81872702

National Natural Science Foundation of China 82003534

National Natural Science Foundation of Jiangsu Province BK20200674

More Information
  • 摘要:   目的  探讨主要组织相容性复合体(major histocompatibility complex, MHC)区域遗传变异与胃癌易感性的关联。  方法  采用病例对照研究设计,以中国汉族人群MHC参考数据集为参照,利用SNP2HLA v1.0.3软件对MHC区域进行基因型填补;应用Logistic回归分析模型鉴定MHC区域中与胃癌易感性存在关联的遗传变异;基于公共数据库,通过系统功能注释探索MHC区域内的易感基因和功能性遗传变异。  结果  本研究发现,rs2517714为MHC区域与胃癌发生风险独立关联的遗传位点(OR=1.13, P=2.70×10-8);功能注释显示位于HLA-A基因外显子区域的氨基酸多态性位点及单核苷酸多态性(single nucleotide polymorphism, SNP)可能会影响HLA-A蛋白稳定性;同时,非编码区的功能性遗传变异rs9295829可能通过影响所在区域增强子活性,从而远程调控HLA-A基因表达,共同影响易感基因HLA-A的功能。  结论  MHC区域致病性遗传变异通过影响易感基因HLA-A功能,从而影响胃癌易感性。
  • 图  1  MHC区域遗传变异与胃癌发生风险关联的区域图

    注:横坐标代表染色体位置,纵坐标代表关联P值的负对数,绿色虚线代表Bonferroni多重校正界值。

    Figure  1.  Regional association plots of MHC loci independently associated with GC risk

    图  2  功能性位点和易感基因的功能注释结果

    Figure  2.  Functional annotation results of potential functional variant and susceptibility gene

    表  1  预测可影响蛋白稳定性和功能的遗传变异

    Table  1.   Genetic variants predicted to affect protein stability and function

    遗传变异 OR(95% CI)值a Pa r2b 氨基酸改变 预测结果
    AA_A_142_30019177_T 1.13(1.08~1.18) 6.24×10-8 0.93 异亮氨酸(I)>苏氨酸(T) 有害变异
    AA_A_145_30019186_H 1.13(1.08~1.18) 6.24×10-8 0.93 精氨酸(R)>组氨酸(H) 有害变异
    AA_A_107_30019072_W 1.12(1.08~1.17) 9.85×10-8 0.90 甘氨酸(G)>色氨酸(W) 有害变异
    AA_A_184_30019881_A 1.12(1.07~1.16) 1.58×10-7 0.85 脯氨酸(P)>丙氨酸(A) 有害变异
    AA_A_62_30018696_G 1.12(1.07~1.17) 2.38×10-7 0.89 谷氨酰胺(Q)>甘氨酸(G) 有害变异
    AA_A_127_30019132_K 1.10(1.06~1.15) 2.21×10-6 0.65 天冬酰胺(N)>赖氨酸(K) 有害变异
    rs1059516 1.13(1.08~1.18) 6.24×10-8 0.90 异亮氨酸(ATC)>苏氨酸(ACC) 有害变异
    rs1059520 0.89(0.85~0.93) 6.24×10-8 0.90 精氨酸(CGC)>组氨酸(CAC) 有害变异
    rs1136702 0.89(0.85~0.93) 9.85×10-8 0.85 甘氨酸(CGG)>色氨酸(CTG) 有害变异
    rs1136741 1.12(1.07~1.16) 1.70×10-7 0.84 脯氨酸(CCC)>丙氨酸(CGC) 有害变异
    注:a采用固定效应模型对6项GWAS研究进行Meta分析;b在中国汉族人群MHC区域参考基因组数据集中与rs2517714之间的连锁不平衡。
    下载: 导出CSV

    表  2  与rs2517714存在高度LD且具有调控活性的11个遗传变异功能注释

    Table  2.   Functional annotations of 11 variants in strong LD with the lead variant rs2517714

    遗传变异 OR(95% CI)值a Pa r2b dbSNP注释 调控活性c RegulomeDB评分 CADD评分 3DSNP评分 GWAVA评分
    rs2523763 0.91(0.88~0.95) 1.35×10-5 0.63 基因间 E 3a 9.15 56.22 0.25
    rs2734987 1.10(1.05~1.14) 8.48×10-6 0.63 基因间 E 3a 10.06 58.08 0.24
    rs2734903 0.90(0.86~0.94) 3.98×10-7 0.73 基因上游 E/P 2a 10.28 144.14 0.36
    rs9260124 0.90(0.86~0.94) 3.98×10-7 0.78 内含子 P 4 10.36 207.05 0.28
    rs17885299 0.89(0.85~0.93) 2.38×10-7 0.86 内含子 P 4 10.26 105.92 0.28
    rs9260145 1.11(1.07~1.16) 4.85×10-7 0.79 内含子 E/P 3a 13.84 135.27 0.32
    rs17882350 0.89(0.85~0.93) 1.05×10-7 0.87 内含子 P 3a 14.64 139.97 0.40
    rs9260149 1.11(1.07~1.16) 4.85×10-7 0.79 内含子 P 4 10.94 138.15 0.35
    rs9260152 0.90(0.86~0.94) 4.85×10-7 0.79 内含子 P 4 10.04 139.98 0.36
    rs9393984 0.89(0.85~0.93) 1.27×10-7 0.79 基因间 E 4 9.90 207.12 0.55
    rs9295829 1.11(1.06~1.16) 2.19×10-6 0.76 内含子 E/P 1b 11.38 201.66 0.41
    注:a采用固定效应模型对6项GWAS研究进行Meta分析;b在中国汉族人群MHC区域参考基因组数据集中与rs2517714之间的连锁不平衡;c E代表具有增强子活性,P代表具有启动子活性。
    下载: 导出CSV
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2] Guan Z, Song B, Liu F, et al. TGF-beta induces HLA-G expression through inhibiting miR-152 in gastric cancer cells[J]. J Biomed Sci, 2015, 22: 107. DOI: 10.1186/s12929-015-0177-4.
    [3] Dutta N, Gupta A, Mazumder DN, et al. Down-regulation of locus-specific human lymphocyte antigen class Ⅰ expression in Epstein-Barr virus-associated gastric cancer: implication for viral-induced immune evasion[J]. Cancer, 2006, 106(8): 1685-1693. DOI: 10.1002/cncr.21784.
    [4] Kelly A, Trowsdale J. Genetics of antigen processing and presentation[J]. Immunogenetics, 2019, 71(3): 161-170. DOI: 10.1007/s00251-018-1082-2.
    [5] Jin G, Lv J, Yang M, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study[J]. Lancet Oncol, 2020, 21(10): 1378-1386. DOI: 10.1016/S1470-2045(20)30460-5.
    [6] Jin G, Ma H, Wu C, et al. Genetic variants at 6p21.1 and 7p15.3 are associated with risk of multiple cancers in Han Chinese[J]. Am J Hum Genet, 2012, 91(5): 928-934. DOI: 10.1016/j.ajhg.2012.09.009.
    [7] Shi Y, Hu Z, Wu C, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1[J]. Nat Genet, 2011, 43(12): 1215-1218. DOI: 10.1038/ng.978.
    [8] Yan C, Zhu M, Ding Y, et al. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations[J]. Gut, 2020, 69(4): 641-651. DOI: 10.1136/gutjnl-2019-318760.
    [9] Gutierrez-Achury J, Zhernakova A, Pulit SL, et al. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease[J]. Nat Genet, 2015, 47(6): 577-578. DOI: 10.1038/ng.3268.
    [10] Hu X, Deutsch AJ, Lenz TL, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk[J]. Nat Genet, 2015, 47(8): 898-905. DOI: 10.1038/ng.3353.
    [11] Sharp SA, Rich SS, Wood AR, et al. Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis[J]. Diabetes Care, 2019, 42(2): 200-207. DOI: 10.2337/dc18-1785.
    [12] Abnet CC, Freedman ND, Hu N, et al. A shared susceptibility locus in PLCE 1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma[J]. Nat Genet, 2010, 42(9): 764-767. DOI: 10.1038/ng.649.
    [13] Zhou F, Cao H, Zuo X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease[J]. Nat Genet, 2016, 48(7): 740-746. DOI: 10.1038/ng.3576.
    [14] Jia X, Han B, Onengut-Gumuscu S, et al. Imputing amino acid polymorphisms in human leukocyte antigens[J]. PLoS One, 2013, 8(6): e64683. DOI: 10.1371/journal.pone.0064683.
    [15] Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans[J]. Bioinformatics, 2010, 26(17): 2190-2191. DOI: 10.1093/bioinformatics/btq340.
    [16] Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. DOI: 10.1093/nar/gkx247.
    [17] Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38(16): e164. DOI: 10.1093/nar/gkq603.
    [18] Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels[J]. Bioinformatics, 2015, 31(16): 2745-2747. DOI: 10.1093/bioinformatics/btv195.
    [19] Teng L, He B, Wang J, et al. 4DGenome: a comprehensive database of chromatin interactions[J]. Bioinformatics, 2015, 31(15): 2560-2564. DOI: 10.1093/bioinformatics/btv158.
    [20] Jin F, Li Y, Dixon JR, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells[J]. Nature, 2013, 503(7475): 290-294. DOI: 10.1038/nature12644.
    [21] Gonzalez-Galarza FF, Mccabe A, Santos E, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools[J]. Nucleic Acids Res, 2020, 48(D1): D783-D788. DOI: 10.1093/nar/gkz1029.
    [22] Niens M, Jarrett RF, Hepkema B, et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma[J]. Blood, 2007, 110(9): 3310-3315. DOI: 10.1182/blood-2007-05-086934.
    [23] Salter RD, Norment AM, Chen BP, et al. Polymorphism in the alpha 3 domain of HLA-A molecules affects binding to CD8[J]. Nature, 1989, 338(6213): 345-347. DOI: 10.1038/338345a0.
    [24] Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors[J]. Annu Rev Immunol, 2006, 24: 419-466. DOI: 10.1146/annurev.immunol.23.021704.115658.
    [25] Kwak Y, Koh J, Park Y, et al. Differential prognostic impact of CD8+ T cells based on human leucocyte antigen I and PD-L1 expression in microsatellite-unstable gastric cancer[J]. Br J Cancer, 2020, 122(9): 1399-1408. DOI: 10.1038/s41416-020-0793-y.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  290
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13
  • 修回日期:  2021-08-25
  • 网络出版日期:  2021-10-23
  • 刊出日期:  2021-09-10

目录

    /

    返回文章
    返回