-
摘要:
目的 探讨主要组织相容性复合体(major histocompatibility complex, MHC)区域遗传变异与胃癌易感性的关联。 方法 采用病例对照研究设计,以中国汉族人群MHC参考数据集为参照,利用SNP2HLA v1.0.3软件对MHC区域进行基因型填补;应用Logistic回归分析模型鉴定MHC区域中与胃癌易感性存在关联的遗传变异;基于公共数据库,通过系统功能注释探索MHC区域内的易感基因和功能性遗传变异。 结果 本研究发现,rs2517714为MHC区域与胃癌发生风险独立关联的遗传位点(OR=1.13, P=2.70×10-8);功能注释显示位于HLA-A基因外显子区域的氨基酸多态性位点及单核苷酸多态性(single nucleotide polymorphism, SNP)可能会影响HLA-A蛋白稳定性;同时,非编码区的功能性遗传变异rs9295829可能通过影响所在区域增强子活性,从而远程调控HLA-A基因表达,共同影响易感基因HLA-A的功能。 结论 MHC区域致病性遗传变异通过影响易感基因HLA-A功能,从而影响胃癌易感性。 -
关键词:
- 胃癌 /
- 全基因组关联研究 /
- 精细定位 /
- 主要组织相容性复合体 /
- HLA-A
Abstract:Objective To investigate the association between genetic variants in the major histocompatibility complex (MHC) region and gastric cancer (GC) susceptibility. Methods Based on a case-control study, MHC region was imputed with SNP2HLA v1.0.3 software by using the Han-MHC database as a reference panel. Logistic regression analysis model was used to identify the independent genetic loci associated with GC susceptibility in the MHC region. Functional annotation of the MHC region was based on online public databases and performed to find the susceptibility gene and potential functional variants. Results We found that rs2517714 was the only independent association signal associated with GC risk in the MHC region (OR=1.13, P=2.70×10-8). The results of functional annotation showed that HLA amino acid polymorphisms and single nucleotide polymorphisms (SNPs) located in the exon region of HLA-A may affect the stability of HLA-A protein. The SNP rs9295829 located in a non-coding region could remotely regulate the expression of HLA-A by affecting enhancer activity. Conclusion Functional genetic variations in the MHC region may affect the function of the susceptibility gene HLA-A to modulate GC susceptibility. -
Key words:
- Gastric cancer /
- Genome-wide association study /
- Fine mapping /
- Major histocompatibility complex /
- HLA-A
-
表 1 预测可影响蛋白稳定性和功能的遗传变异
Table 1. Genetic variants predicted to affect protein stability and function
遗传变异 OR(95% CI)值a P值a r2值b 氨基酸改变 预测结果 AA_A_142_30019177_T 1.13(1.08~1.18) 6.24×10-8 0.93 异亮氨酸(I)>苏氨酸(T) 有害变异 AA_A_145_30019186_H 1.13(1.08~1.18) 6.24×10-8 0.93 精氨酸(R)>组氨酸(H) 有害变异 AA_A_107_30019072_W 1.12(1.08~1.17) 9.85×10-8 0.90 甘氨酸(G)>色氨酸(W) 有害变异 AA_A_184_30019881_A 1.12(1.07~1.16) 1.58×10-7 0.85 脯氨酸(P)>丙氨酸(A) 有害变异 AA_A_62_30018696_G 1.12(1.07~1.17) 2.38×10-7 0.89 谷氨酰胺(Q)>甘氨酸(G) 有害变异 AA_A_127_30019132_K 1.10(1.06~1.15) 2.21×10-6 0.65 天冬酰胺(N)>赖氨酸(K) 有害变异 rs1059516 1.13(1.08~1.18) 6.24×10-8 0.90 异亮氨酸(ATC)>苏氨酸(ACC) 有害变异 rs1059520 0.89(0.85~0.93) 6.24×10-8 0.90 精氨酸(CGC)>组氨酸(CAC) 有害变异 rs1136702 0.89(0.85~0.93) 9.85×10-8 0.85 甘氨酸(CGG)>色氨酸(CTG) 有害变异 rs1136741 1.12(1.07~1.16) 1.70×10-7 0.84 脯氨酸(CCC)>丙氨酸(CGC) 有害变异 注:a采用固定效应模型对6项GWAS研究进行Meta分析;b在中国汉族人群MHC区域参考基因组数据集中与rs2517714之间的连锁不平衡。 表 2 与rs2517714存在高度LD且具有调控活性的11个遗传变异功能注释
Table 2. Functional annotations of 11 variants in strong LD with the lead variant rs2517714
遗传变异 OR(95% CI)值a P值a r2值b dbSNP注释 调控活性c RegulomeDB评分 CADD评分 3DSNP评分 GWAVA评分 rs2523763 0.91(0.88~0.95) 1.35×10-5 0.63 基因间 E 3a 9.15 56.22 0.25 rs2734987 1.10(1.05~1.14) 8.48×10-6 0.63 基因间 E 3a 10.06 58.08 0.24 rs2734903 0.90(0.86~0.94) 3.98×10-7 0.73 基因上游 E/P 2a 10.28 144.14 0.36 rs9260124 0.90(0.86~0.94) 3.98×10-7 0.78 内含子 P 4 10.36 207.05 0.28 rs17885299 0.89(0.85~0.93) 2.38×10-7 0.86 内含子 P 4 10.26 105.92 0.28 rs9260145 1.11(1.07~1.16) 4.85×10-7 0.79 内含子 E/P 3a 13.84 135.27 0.32 rs17882350 0.89(0.85~0.93) 1.05×10-7 0.87 内含子 P 3a 14.64 139.97 0.40 rs9260149 1.11(1.07~1.16) 4.85×10-7 0.79 内含子 P 4 10.94 138.15 0.35 rs9260152 0.90(0.86~0.94) 4.85×10-7 0.79 内含子 P 4 10.04 139.98 0.36 rs9393984 0.89(0.85~0.93) 1.27×10-7 0.79 基因间 E 4 9.90 207.12 0.55 rs9295829 1.11(1.06~1.16) 2.19×10-6 0.76 内含子 E/P 1b 11.38 201.66 0.41 注:a采用固定效应模型对6项GWAS研究进行Meta分析;b在中国汉族人群MHC区域参考基因组数据集中与rs2517714之间的连锁不平衡;c E代表具有增强子活性,P代表具有启动子活性。 -
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. [2] Guan Z, Song B, Liu F, et al. TGF-beta induces HLA-G expression through inhibiting miR-152 in gastric cancer cells[J]. J Biomed Sci, 2015, 22: 107. DOI: 10.1186/s12929-015-0177-4. [3] Dutta N, Gupta A, Mazumder DN, et al. Down-regulation of locus-specific human lymphocyte antigen class Ⅰ expression in Epstein-Barr virus-associated gastric cancer: implication for viral-induced immune evasion[J]. Cancer, 2006, 106(8): 1685-1693. DOI: 10.1002/cncr.21784. [4] Kelly A, Trowsdale J. Genetics of antigen processing and presentation[J]. Immunogenetics, 2019, 71(3): 161-170. DOI: 10.1007/s00251-018-1082-2. [5] Jin G, Lv J, Yang M, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study[J]. Lancet Oncol, 2020, 21(10): 1378-1386. DOI: 10.1016/S1470-2045(20)30460-5. [6] Jin G, Ma H, Wu C, et al. Genetic variants at 6p21.1 and 7p15.3 are associated with risk of multiple cancers in Han Chinese[J]. Am J Hum Genet, 2012, 91(5): 928-934. DOI: 10.1016/j.ajhg.2012.09.009. [7] Shi Y, Hu Z, Wu C, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1[J]. Nat Genet, 2011, 43(12): 1215-1218. DOI: 10.1038/ng.978. [8] Yan C, Zhu M, Ding Y, et al. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations[J]. Gut, 2020, 69(4): 641-651. DOI: 10.1136/gutjnl-2019-318760. [9] Gutierrez-Achury J, Zhernakova A, Pulit SL, et al. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease[J]. Nat Genet, 2015, 47(6): 577-578. DOI: 10.1038/ng.3268. [10] Hu X, Deutsch AJ, Lenz TL, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk[J]. Nat Genet, 2015, 47(8): 898-905. DOI: 10.1038/ng.3353. [11] Sharp SA, Rich SS, Wood AR, et al. Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis[J]. Diabetes Care, 2019, 42(2): 200-207. DOI: 10.2337/dc18-1785. [12] Abnet CC, Freedman ND, Hu N, et al. A shared susceptibility locus in PLCE 1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma[J]. Nat Genet, 2010, 42(9): 764-767. DOI: 10.1038/ng.649. [13] Zhou F, Cao H, Zuo X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease[J]. Nat Genet, 2016, 48(7): 740-746. DOI: 10.1038/ng.3576. [14] Jia X, Han B, Onengut-Gumuscu S, et al. Imputing amino acid polymorphisms in human leukocyte antigens[J]. PLoS One, 2013, 8(6): e64683. DOI: 10.1371/journal.pone.0064683. [15] Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans[J]. Bioinformatics, 2010, 26(17): 2190-2191. DOI: 10.1093/bioinformatics/btq340. [16] Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. DOI: 10.1093/nar/gkx247. [17] Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38(16): e164. DOI: 10.1093/nar/gkq603. [18] Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels[J]. Bioinformatics, 2015, 31(16): 2745-2747. DOI: 10.1093/bioinformatics/btv195. [19] Teng L, He B, Wang J, et al. 4DGenome: a comprehensive database of chromatin interactions[J]. Bioinformatics, 2015, 31(15): 2560-2564. DOI: 10.1093/bioinformatics/btv158. [20] Jin F, Li Y, Dixon JR, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells[J]. Nature, 2013, 503(7475): 290-294. DOI: 10.1038/nature12644. [21] Gonzalez-Galarza FF, Mccabe A, Santos E, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools[J]. Nucleic Acids Res, 2020, 48(D1): D783-D788. DOI: 10.1093/nar/gkz1029. [22] Niens M, Jarrett RF, Hepkema B, et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma[J]. Blood, 2007, 110(9): 3310-3315. DOI: 10.1182/blood-2007-05-086934. [23] Salter RD, Norment AM, Chen BP, et al. Polymorphism in the alpha 3 domain of HLA-A molecules affects binding to CD8[J]. Nature, 1989, 338(6213): 345-347. DOI: 10.1038/338345a0. [24] Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors[J]. Annu Rev Immunol, 2006, 24: 419-466. DOI: 10.1146/annurev.immunol.23.021704.115658. [25] Kwak Y, Koh J, Park Y, et al. Differential prognostic impact of CD8+ T cells based on human leucocyte antigen I and PD-L1 expression in microsatellite-unstable gastric cancer[J]. Br J Cancer, 2020, 122(9): 1399-1408. DOI: 10.1038/s41416-020-0793-y.