-
摘要:
目的 研究高三酰甘油-腰围(hypertriglyceridemia-waist,HTGW)表型与高尿酸血症(hyperuricemia,HUA)的关系,为早期识别HUA的高危个体提供依据。 方法 采用多阶段抽样的方法抽取中山市24个镇区的成人进行现场问卷调查、体格检查及生化指标检测。使用Logistic回归分析模型、Goodman-Kruskal法和多元线性逐步回归分析HTGW表型与HUA之间的关系。 结果 共纳入研究对象7 173人,HTGW表型人群共1 089人,检出率为15.2%,HUA患者共2 332人,检出率为32.5%。多因素Logistic回归分析模型分析结果显示HTGW表型为HUA患病的重要危险因素(OR=2.689, 95% CI: 2.249~3.215, P < 0.001)。Goodman-Kruskal法关联性分析和多元线性回归模型均显示HTGW表型与HUA存在着明显的正相关关系(P <0.001)。 结论 HTGW表型为HUA患病的重要危险因素,在日常防治HUA的过程中,应重点监测具有HTGW表型的人群。 Abstract:Objective To study the relationship between hypertriglyceridemia-waist (HTGW) phenotype and high uric acidemia (HUA) and provide a basis for early identification of high-risk individuals of HUA. Methods Adults from 24 townships in Zhongshan City were selected by multi-stage random sampling method to conduct on-site questionnaires, physical examinations and biochemical index detection. The relationship between HTGW phenotype and HUA was analyzed using Logistic regression model, Goodman-Kruskal method and multivariate linear stepwise regression. Results A total of 7 173 subjects were included. The detectable rate was 15.2% for the HTGW phenotype population and 2 332 for HUA patients, with a detectable rate of 32.5%. The multi-factor Logistic regression analysis showed that the HTGW phenotype was an important risk factor for HUA (OR=2.689, 95% CI: 2.249-3.215, P <0.001). The results of the Goodman-Kruskal correlation analysis and Multiple linear regression modol showed that there was a significant positive correlation between the HTGW phenotype and HUA (P < 0.001). Conclusions HTGW phenotype is an important risk factor of HUA. In daily prevention and treatment of HUA, we should focus on monitoring people with HTGW phenotype. -
Key words:
- High uric acidemia /
- Serum uric acid /
- Biomarker /
- Hypertriglyceridemia-waist
-
表 1 HUA影响因素的单因素分析
Table 1. Univariate analysis of influencing factors of HUA
变量 HUA患者例数 非HUA患者例数 HUA患病率(%) OR(95% CI)值 P值 变量 HUA患者例数 非HUA患者例数 HUA患病率(%) OR(95% CI)值 P值 性别 吸烟 男 1 415 1 969 41.8 1.000 否 1 661 3 545 31.9 1.000 女 917 2 872 24.2 0.444(0.402~0.491) < 0.001 曾经 230 405 36.2 1.212(1.021~1.440) 0.028 年龄(岁) 现在 441 891 33.1 1.056(0.929~1.201) 0.402 18~<40 1 271 2 664 32.3 1.000 饮酒 40~<60 807 1 788 31.1 0.946(0.850~1.052) 0.308 否 1 549 3 276 32.1 1.000 ≥60 254 389 39.5 1.369(1.153~1.625) < 0.001 偶尔 220 431 33.8 1.080(0.908~1.284) 0.387 文化程度 经常 1 134 563 33.2 1.050(0.933~1.181) 0.417 小学及以下 554 1 111 33.3 1.000 BMI 初中 781 1 633 32.4 0.959(0.840~1.095) 0.538 正常 865 2 787 23.7 1.000 高中 619 1 191 34.2 1.042(0.905~1.200) 0.564 低体重 77 441 14.9 0.563(0.436~0.725) < 0.001 大专及以上 378 906 29.4 0.837(0.715~0.979) 0.026 超重 908 1 237 42.3 2.365(2.109~2.652) < 0.001 高血压 肥胖 482 376 56.2 4.130(3.537~4.822) < 0.001 否 1 652 3 979 29.3 1.000 TG-腰围表型 是 680 862 44.1 1.900(1.692~2.133) < 0.001 NTNW 789 2731 22.4 1.000 NTGW/HTNW 938 1626 36.6 1.997(1.784~2.235) < 0.001 HTGW 605 484 55.6 4.327(3.749~4.994) < 0.001 表 2 HUA影响因素的多因素Logistic回归分析
Table 2. Multivariate Logistic regression analysis of influencing factors of HUA
影响因素 β值 sx值 Wald值 OR(95% CI)值 P值 性别 男 1.000 女 -0.718 0.055 170.146 0.488(0.438~0.543) < 0.001 年龄(岁) 18~<40 1.000 40~<60 -0.429 0.062 48.025 0.651(0.577~0.735) < 0.001 ≥60 -0.041 0.097 0.180 0.960(0.794~1.160) 0.671 高血压 否 1.000 是 0.225 0.068 10.955 1.252(1.096~1.430) <0.001 BMI 正常 1.000 低体重 -0.468 0.132 12.511 0.626(0.483~0.812) < 0.001 超重 0.508 0.068 55.276 1.662(1.454~1.900) < 0.001 肥胖 0.882 0.094 87.555 2.415(2.007~2.904) < 0.001 TG-腰围表型 NTNW 1.000 NTGW/ HTNW 0.449 0.070 41.228 1.567(1.366~1.797) < 0.001 HTGW 0.989 0.091 117.762 2.689(2.249~3.215) < 0.001 表 3 尿酸值影响因素的多元线性逐步回归分析
Table 3. Multivariate linear stepwise analysis of influencing factors of SUA
影响因素 回归系数 sx值 标准化的回归系数 t值 P值 TG 10.070 0.792 0.134 12.715 <0.001 WC 1.024 0.141 0.102 7.238 <0.001 -
[1] 王雪莹, 李楠, 郭佳桐, 等. 基于分类树模型对高尿酸血症的影响因素分析[J]. 中华疾病控制杂志, 2019, 23(11): 1364-1369. DOI: 10.16462/j.cnki.zhjbkz.2019.11.013.Wang XY, Li N, Guo JT, et al. Analysis on the associated factors of hyperuricemia: based on classification tree model[J]. Chin J Dis Control Prev, 2019, 23(11): 1364-1369. DOI: 10.16462/j.cnki.zhjbkz.2019.11.013. [2] Joo HJ, Kim GR, Choi DW, et al. Uric acid level and kidney function: a cross-sectional study of the Korean national health and nutrition examination survey (2016-2017)[J]. Sci Rep, 2020, 10(1): 21672. DOI: 10.1038/s41598-020-77702-x. [3] Wei CY, Sun CC, Wei JC, et al. Association between hyperuricemia and metabolic syndrome: an epidemiological study of a labor force population in Taiwan[J]. Biomed Res Int, 2015, 2015: 369179. DOI: 10.1155/2015/369179. [4] Yu W, Cheng JD. Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective[J]. Front Pharmacol, 2020, 11: 582680. DOI: 10.3389/fphar.2020.582680. [5] Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men?[J]. Circulation, 2000, 102(2): 179-184. DOI: 10.1161/01.cir.102.2.179. [6] Ma CM, Wang R, Liu XL, et al. The Relationship between Hypertriglyceridemic Waist Phenotype and Early Diabetic Nephropathy in Type 2 Diabetes[J]. Cardiorenal Med, 2017, 7(4): 295-300. DOI: 10.1159/000477828. [7] Qiu Y, Zhao Q, Wang N, et al. Association of hypertriglyceridemic waist phenotype with renal function impairment: a cross-sectional study in a population of Chinese adults[J]. Nutr Metab(Lond), 2020, 17: 63. DOI: 10.1186/s12986-020-00483-7. [8] LeBlanc S, Coulombe F, Bertrand OF, et al. Hypertriglyceridemic waist: a simple marker of high-risk atherosclerosis features associated with excess visceral adiposity/ectopic fat[J]. J Am Heart Assoc, 2018, 7(8): 1-15. DOI: 10.1161/JAHA.117.008139. [9] 中国高血压防治指南修订委员会, 高血压联盟(中国), 中华医学会心血管病学分会, 等. 中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志, 2019, 24(1): 24-56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.Writing Group of 2018 Chinese Guidelines for the Management of Hypertension, Chinese Hypertension League, Chinese Society of Cardiology, et al. 2018 Chinese guidelines for the management of hypertension[J]. Chin J Cardiovasc Med, 2019, 24(1): 24-56. DOI: 10.3969/j.issn.1007-5410.2019.01.002. [10] 中国肥胖问题工作组. 中国成人超重与肥胖症预防与控制指南(节录)[J]. 营养学报, 2004, 26(1): 1-4. DOI: 10.3321/j.issn:0512-7955.2004.01.001.Working Group on Obesity in China. Guidelines for prevention and control of overweight and obesity in Chinese adults[J]. Acta Nutr Sin, 2004, 26(1): 1-4. DOI: 10.3321/j.issn:0512-7955.2004.01.001. [11] 李林, 朱小霞, 戴宇翔, 等. 中国高尿酸血症相关疾病诊疗多学科专家共识[J]. 中华内科杂志, 2017, 56(3): 235-248. DOI: 10.3760/cma.j.issn.0578-1426.2017.03.021.Li L, Zhu XX, Dai YX, et al. Chinese multi-disciplinary consensus on the diagnosis and treatment of hyperuricemia and its related diseases[J]. Chin J Intern Med, 2017, 56(3): 235-248. DOI: 10.3760/cma.j.issn.0578-1426.2017.03.021. [12] 饶媛, 刘宏艺, 梁结玲, 等. 东莞市茶山镇成年人血脂异常与高尿酸血症的关系[J]. 新医学, 2020, 51(9): 718-723. DOI: 10.3969/j.issn.0253-9802.2020.09.016.Rao Y, Liu HY, Liang JL, et al, Association between hyperuricemia and dyslipidemia in Chinese adults from Chashan, Dongguan[J]. J New Med, 2020, 51(9): 718-723. DOI: 10.3969/j.issn.0253-9802.2020.09.016. [13] 中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019)[J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13. DOI: 10.3760/cma.j.issn.1000-6699.2020.01.001.Chinese Society of Endocrinology, Chinese Medical Association. Guidelines for the diagnosis and treatment of hyperuricemia and gout in China(2019)[J]. Chin J Endocrinol Metab, 2020, 36(1): 1-13. DOI: 10.3760/cma.j.issn.1000-6699.2020.01.001. [14] 张明峰, 郭惠芳, 高丽霞. 高尿酸血症对代谢综合征和心血管病的影响与防治[J]. 临床荟萃, 2016, 31(5): 496-500. DOI: 10.3969/j.issn.1004-583X.2016.05.007.Zhang MF, Guo HF, Gao LX. Pay attention to the influence and prevention strategy of hyperuricemia on metabolic syndrome and cardiovascular disease[J]. Clin Focus, 2016, 31(5): 496-500. DOI: 10.3969/j.issn.1004-583X.2016.05.007. [15] Chen S, Guo XF, Dong SY, et al. Association between the hypertriglyceridemic waist phenotype and hyperuricemia: a cross-sectional study[J]. Clin Rheumatol, 2017, 36(5): 1111-1119. DOI: 1111-1119.10.1007/s10067-017-3559-z. [16] Sam S, Haffner S, Davidson MH, et al. Hypertriglyceridemic waist phenotype predicts increased visceral fat in subjects with type 2 diabetes[J]. Diabetes Care, 2009, 32(10): 1916-1920. DOI: 10.2337/dc09-0412. [17] Fabregat I, Revilla E, Machado A. Short-term control of the pentose phosphate cycle by insulin could be modulated by the NADPH/NADP ratio in rat adipocytes and hepatocytes[J]. Biochem Biophys Res Commun, 1987, 146(2): 920-925. DOI: 10.1016/0006-291X(87)90618-8. [18] Rospleszcz S, Dermyshi D, Müller-Peltzer K, et al. Association of serum uric acid with visceral, subcutaneous and hepatic fat quantified by magnetic resonance imaging[J]. Sci Rep, 2020, 10(1): 442. DOI: 10.1038/s41598-020-57459-z. [19] Yamada A, Sato KK, Kinuhata S, et al. Association of visceral fat and liver fat with hyperuricemia[J]. Arthritis Care Res(Hoboken), 2016, 68(4): 553-561. DOI: 10.1002/acr.22729. [20] Björntorp P. "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes[J]. Arteriosclerosis, 1990, 10(4): 493-496. DOI: 10.1161/01.ATV.10.4.493. [21] Ma WY, Cui CM, Feng S, et al. Serum uric acid and triglycerides in Chinese patients with newly diagnosed moyamoya disease: a cross-sectional study[J]. Biomed Res Int, 2019, 2019: 9792412. DOI: 10.1155/2019/9792412.