Clinical epidemiological study on the association between neutrophil extracellular traps and acute myocardial infarction among coronary atherosclerotic heart disease
-
摘要:
目的 探讨冠状动脉粥样硬化性心脏病(coronary atherosclerotic heart disease, CAHD)急性心肌梗死(acute myocardial infarction, AMI)发作及冠脉旁路移植术(coronary artery bypass graft, CABG)后周围血中性粒细胞胞外陷阱(neutrophil extracellular traps, NETs)水平变化及作用,为有效防控CAHD及AMI提供新依据。 方法 选择AMI患者和健康对照(healthy control, HC)各52例,ELISA法检测AMI发病时治疗前(pre-treatment, PRT)组及手术治疗后(post-operative treatment, POT)组周围血NETs、B因子活化片段a(fragment a of the factor B, Ba)、补体片段5a(fragment a of the 5th complement, C5a)及髓过氧化酶(myeloperoxidase, MPO)水平,检测结果的组间比较采用t检验,PRT组内观察指标间的相关性分析采用Pearson相关分析。 结果 PRT组和POT组各检测指标均高于HC组,PRT组心肌肌钙蛋白I(cardiac troponin I, cTnI)、NETs、Ba、C5a和MPO高于POT组[分别为(0.279±0.132)ng/ml vs.(0.016±0.008)ng/ml, P < 0.001;(0.466±0.143)OD值vs.(0.378±0.151)OD值, P=0.002;(72.812±30.144)pg/ml vs.(60.491±28.323)pg/ml, P=0.001;(327.112±203.228)ng/ml vs.(260.411±135.984)ng/ml, P=0.025;(75.782±33.596)ng/ml vs.(58.462±29.647)ng/ml, P=0.008];PRT组中NETs分别与Ba、C5a及MPO呈正相关(分别为r=0.394, P=0.001;r=0.324, P=0.030和r=0.406, P < 0.001),且Ba与C5a呈正相关(r=0.436, P < 0.001),但cTnI仅与NETs呈正相关(r=0.352, P=0.008)。POT组中,cTnI虽已恢复正常值范围,但仍高于HC组cTnI [(0.016±0.008)pg/ml vs.(0.012±0.007)pg/ml, P=0.016]。 结论 CAHD患者在AMI发作期和接受CABG手术后,持续存在高水平NETs及与其相关的高补体旁路活化状态,有助于病情进展和心肌梗死再发,干预NETs形成可能是防治CHAD进展和AMI发生的潜在途径之一。 -
关键词:
- 冠状动脉粥样硬化性心脏病 /
- 急性心肌梗死 /
- 冠脉旁路移植术 /
- 中性粒细胞胞外陷阱 /
- 发病机制
Abstract:Objective To investigate the change and its roles of neutrophil extracellular traps (NETs) in peripheral blood from patients with coronary atherosclerotic heart disease (CAHD) during their acute myocardial infarction (AMI) and post operation of coronary artery bypass graft (CABG), and to proride effective prevention and control of CAHD and AMI. Methods A total of 52 patients with AMI and 52 healthy controls (HCs) were involved in this study. The levels of NETs, fragment a of the factor B (Ba), fragment a of the 5th complement (C5a) and myeloperoxidase (MPO) in peripheral blood were detected by enzyme linked immunosorbent assay (ELISA) at the onset of AMI [pre-treatment (PRT) group], post-operative treatment group (POT group) and in HC group. Their differences between the groups were detected by t test while the relationships between the parameters in PRT group were tested by Pearson correlation analysis. Results All the parameters from PRT and POT group were higher than those in the HC group, respectively. The levels of cardiac troponin I (cTnI), NETs, Ba, C5a and MPO in PRT group were higher than those in POT group [(0.279±0.132) ng/ml vs.(0.016±0.008) ng/ml, P < 0.001; OD value: (0.466±0.143) vs. (0.378±0.151), P=0.002; (72.812±30.144) pg/ml vs. (60.491±28.323) pg/ml, P=0.001; (327.112±203.228) ng/ml vs. (260.411±135.984) ng/ml, P=0.025; (75.782±33.596) ng/ml vs. (58.462±29.647) ng/ml, P=0.008, respectively]. In PRT group, NETs was positively correlated with Ba, C5a and MPO (r=0.394, P=0.001; r=0.324, P=0.030 and r=0.406, P < 0.001), respectively, and Ba had positive correlation with C5a (r=0.436, P < 0.001) while cTnI was only correlated with NETs (r=0.352, P=0.008). The cTnI level, though recovered to normal range in POT group, was still higher than that in HC group [(0.016±0.008) pg/ml vs. (0.012±0.007) pg/ml, P=0.016]. Conclusions The persistent high level of NETs and its related high activity of complement alternative pathway in CAHD during the onset of AMI and post-treatment of CABG might contribute to the progression of the disease and the recurrence of myocardial infarction. Intervention on the formation of NETs might be one of the potential pathways to prevent the progression of CHAD and the occurrence of AMI. -
表 1 研究对象cTnI、NETs、Ba、C5a及MPO水平的组间比较(x±s)
Table 1. Comparison of cTnI, nets, Ba, C5a and MPO levels among subjects (x±s)
项目 AMI组(N=52) HC组(N=52) P值a P值b P值c PRT组 POT组 cTnI (ng/ml) 0.279±0.132 0.016±0.008 0.012±0.007 < 0.001 < 0.001 0.016 NETs (OD值) 0.466±0.143 0.378±0.151 0.273±0.150 0.002 < 0.001 0.006 Ba (pg/ml) 72.812±30.144 60.491±28.323 50.072±18.258 0.001 < 0.001 0.028 C5a (ng/ml) 327.112±203.228 260.411±135.984 203.232±68.813 0.025 < 0.001 0.008 MPO (ng/ml) 75.782±33.596 58.462±29.647 42.206±24.802 0.008 < 0.001 0.003 注:a PRT组与POT组间配对t检验的P值;b PRT组与HC组间t检验的P值;c POT组与HC组间t检验的P值。 表 2 PRT组相关指标相关性
Table 2. Correlation of related indexes in PRT group
项目 cTnI 年龄 NETs Ba C5a MPO cTnI 1.000 0.054 0.352 a 0.137 0.112 0.033 年龄 - 1.000 0.091 0.104 0.239 0.056 NETs - - 1.000 0.394 a 0.324 a 0.406 a Ba - - - 1.000 0.436 a 0.125 C5a - - - - 1.000 0.040 MPO - - - - - 1.000 注:a P < 0.05。 -
[1] Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics: 2015 update: a report from the American Heart Association[J]. Circulation, 2015, 131(4): e29-e322. DOI: 10.1161/CIR.0000000000000152. [2] Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3): 341-355. DOI: 10.1016/j.cell.2011.04.005. [3] Schloss MJ, Swirski FK, Nahrendorf M. Modifiable cardiovascular risk, hematopoiesis, and innate immunity[J]. Circ Res, 2020, 126(9): 1242-1259. DOI: 10.1161/CIRCRESAHA.120.315936. [4] Varghese JF, Patel R, Yadav UCS. Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis[J]. Curr Cardiol Rev, 2018, 14(1): 4-14. DOI: 10.2174/1573403X13666171009112250. [5] Ezhov M, Safarova M, Afanasieva O, et al. Matrix metalloproteinase 9 as a predictor of coronary atherosclerotic plaque instability in stable coronary heart disease patients with elevated lipoprotein(a) levels[J]. Biomolecules, 2019, 9(4): 129. DOI: 10.3390/biom9040129. [6] Novotny J, Oberdieck P, Titova A, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction[J]. Neurology, 2020, 94(22): e2346-e2360. DOI: 10.1212/WNL.0000000000009532. [7] Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535. DOI: 10.1126/science.1092385. [8] Burgener SS, Schroder K. Neutrophil extracellular traps in host defense[J]. Cold Spring Harb Perspect Biol, 2020, 12(7): a037028. DOI: 10.1101/cshperspect.a037028. [9] Döring Y, Libby P, Soehnlein O. Neutrophil extracellular traps participate in cardiovascular diseases: recent experimental and clinical insights[J]. Circ Res, 2020, 126(9): 1228-1241. DOI: 10.1161/CIRCRESAHA.120.315931. [10] Laridan E, Martinod K, de Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis[J]. Semin Thromb Hemost, 2019, 45(1): 86-93. DOI: 10.1055/s-0038-1677040. [11] Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018)[J]. Circulation, 2018, 138(20): e618-e651. DOI: 10.1161/CIR.0000000000000617. [12] Miyoshi A, Yamada M, Shida H, et al. Circulating neutrophil extracellular trap levels in well-controlled type 2 diabetes and pathway involved in their formation induced by high-dose glucose[J]. Pathobiology, 2016, 83(5): 243-251. DOI: 10.1159/000444881. [13] 庞博文, 王森, 何倩, 等. 抗中性粒细胞胞质-髓过氧化物酶抗体相关性血管炎肽酰基精氨酸脱亚胺酶4表达的变化及临床意义[J]. 中华风湿病学杂志, 2020, 24(8): 536-540. DOI: 10.3760/cma.j.cn141217-20191022-00357.Pang BW, Wang S, He Q, et al. A preliminary study on the change and clinical significance of peptidylarginine deiminase 4 expression on the neutrophils in the peripheral blood from the patients with anti-neutrophil cytoplasmic myeloperoxidase antibody-associated vasculitis[J]. Chin J Rheumatol, 2020, 24(8): 536-540. DOI: 10.3760/cma.j.cn141217-20191022-00357. [14] Liu J, Yang D, Wang X, et al. Neutrophil extracellular traps and dsDNA predict outcomes among patients with ST-elevation myocardial infarction[J]. Sci Rep, 2019, 9(1): 11599. DOI: 10.1038/s41598-019-47853-7. [15] Jacobs LH, van de Kerkhof J, Mingels AM, et al. Haemodialysis patients longitudinally assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and cardiac troponin I assays[J]. Ann Clin Biochem, 2009, 46(Pt 4): 283-290. DOI: 10.1258/acb.2009.008197. [16] Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction[J]. Circulation, 2012, 126(16): 2020-2035. DOI: 10.1161/CIR.0b013e31826e1058. [17] Vasile VC, Babuin L, Giannitsis E, et al. Relationship of MRI-determined infarct size and cTnI measurements in patients with ST-elevation myocardial infarction[J]. Clin Chem, 2008, 54(3): 617-619. DOI: 10.1373/clinchem.2007.095604. [18] Helseth R, Solheim S, Arnesen H, et al. The time course of markers of neutrophil extracellular traps in patients undergoing revascularisation for acute myocardial infarction or stable angina pectoris[J]. Mediators Inflamm, 2016, 2016: 2182358. DOI: 10.1155/2016/2182358. [19] Wang H, Wang C, Zhao MH, et al. Neutrophil extracellular traps can activate alternative complement pathways[J]. Clin Exp Immunol, 2015, 181(3): 518-527. DOI: 10.1111/cei.12654. [20] Schreiber A, Xiao H, Jennette JC, et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis[J]. J Am Soc Nephrol, 2009, 20(2): 289-298. DOI: 10.1681/ASN.2008050497. [21] Huang YM, Wang H, Wang C, et al. Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps[J]. Arthritis Rheumatol, 2015, 67(10): 2780-2790. DOI: 10.1002/art.39239. [22] Thålin C, Hisada Y, Lundström S, et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1724-1738. DOI: 10.1161/ATVBAHA.119.312463. [23] Novotny J, Chandraratne S, Weinberger T, et al. Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation[J]. PLoS One, 2018, 13(1): e0190728. DOI: 10.1371/journal.pone.0190728. [24] Selvanayagam JB, Porto I, Channon K, et al. Troponin elevation after percutaneous coronary intervention directly represents the extent of irreversible myocardial injury: insights from cardiovascular magnetic resonance imaging[J]. Circulation, 2005, 111(8): 1027-1032. DOI: 10.1161/01.CIR.0000156328.28485.AD. [25] Rahimi K, Banning AP, Cheng AS, et al. Prognostic value of coronary revascularisation-related myocardial injury: a cardiac magnetic resonance imaging study[J]. Heart, 2009, 95(23): 1937-1943. DOI: 10.1136/hrt.2009.173302. [26] Li T, Peng R, Wang F, et al. Lysophosphatidic acid promotes thrombus stability by inducing rapid formation of neutrophil extracellular traps: A new mechanism of thrombosis[J]. J Thromb Haemost, 2020, 18(8): 1952-1964. DOI: 10.1111/jth.14839. [27] Galon MZ, Wang Z, Bezerra HG, et al. Differences determined by optical coherence tomography volumetric analysis in non-culprit lesion morphology and inflammation in ST-segment elevation myocardial infarction and stable angina pectoris patients[J]. Catheter Cardiovasc Interv, 2015, 85(4): E108-E115. DOI: 10.1002/ccd.25660.