• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气PM2.5持续高暴露对中老年人群心血管代谢风险的影响

石婉荧 陈晨 曹亚强 张翼 崔倩 赵峰 王蛟男 方建龙 唐宋 李湉湉 施小明

石婉荧, 陈晨, 曹亚强, 张翼, 崔倩, 赵峰, 王蛟男, 方建龙, 唐宋, 李湉湉, 施小明. 大气PM2.5持续高暴露对中老年人群心血管代谢风险的影响[J]. 中华疾病控制杂志, 2021, 25(10): 1120-1125, 1168. doi: 10.16462/j.cnki.zhjbkz.2021.10.002
引用本文: 石婉荧, 陈晨, 曹亚强, 张翼, 崔倩, 赵峰, 王蛟男, 方建龙, 唐宋, 李湉湉, 施小明. 大气PM2.5持续高暴露对中老年人群心血管代谢风险的影响[J]. 中华疾病控制杂志, 2021, 25(10): 1120-1125, 1168. doi: 10.16462/j.cnki.zhjbkz.2021.10.002
SHI Wan-ying, CHEN Chen, CAO Ya-qiang, ZHANG Yi, CUI Qian, ZHAO Feng, WANG Jiao-nan, FANG Jian-long, TANG Song, LI Tian-tian, SHI Xiao-ming. Impact of persistent high ambient fine particulate matters exposure on cardiometabolic risk factors among middle-aged and elderly people[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(10): 1120-1125, 1168. doi: 10.16462/j.cnki.zhjbkz.2021.10.002
Citation: SHI Wan-ying, CHEN Chen, CAO Ya-qiang, ZHANG Yi, CUI Qian, ZHAO Feng, WANG Jiao-nan, FANG Jian-long, TANG Song, LI Tian-tian, SHI Xiao-ming. Impact of persistent high ambient fine particulate matters exposure on cardiometabolic risk factors among middle-aged and elderly people[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(10): 1120-1125, 1168. doi: 10.16462/j.cnki.zhjbkz.2021.10.002

大气PM2.5持续高暴露对中老年人群心血管代谢风险的影响

doi: 10.16462/j.cnki.zhjbkz.2021.10.002
基金项目: 

国家自然科学基金 81573247

国家重点研发计划 2016YFC0206500

大气重污染成因与治理攻关项目 DQGG0401

详细信息
    通讯作者:

    施小明,E-mail: shixm@chinacdc.cn

  • 中图分类号: R122.2;R181

Impact of persistent high ambient fine particulate matters exposure on cardiometabolic risk factors among middle-aged and elderly people

Funds: 

National Natural Science Foundation of China 81573247

National Key Research and Development Program of China 2016YFC0206500

National research program for key issues in air pollution control DQGG0401

More Information
  • 摘要:   目的  探索京津冀及周边地区大气中细颗粒物(fine particulate matters, PM2.5)持续高暴露对中老年人群心血管代谢风险的影响。  方法  于2017年4月9日―2019年3月31日在京津冀及周边共6个省、市开展横断面调查,选择40~<90岁社区中老年人作为研究对象,共计2 415名。通过问卷调查获取居民个人基本情况、社会经济状况和生活方式等信息,通过体格检查以获得腰围、血压、FPG、TG和HDL-C水平,根据2005年国际糖尿病联盟发布的共识声明定义代谢风险因素聚集。以PM2.5日均浓度≥75 μg/m3、≥各县、区参与调查当天PM2.5日均浓度的P90及不同持续时间(≥2 d和≥3 d)定义PM2.5高暴露情景和持续状态。采用Logistic回归分析模型分析大气PM2.5持续高暴露对人群心血管代谢风险聚集的影响。  结果  大气PM2.5持续高暴露与人群代谢风险聚集风险存在关联,尤其是PM2.5浓度≥P90且持续2 d、3 d以上时可观察到具有统计学意义的结果,人群代谢风险因素聚集影响的OR(95% CI)值分别为1.58(1.00~2.50)和2.57(1.27~5.22)。其中FPG上升、TG水平上升是较为敏感的代谢风险因素。亚组分析结果显示,PM2.5持续高暴露对男性和<65岁人群代谢风险的影响更强。  结论  京津冀及周边地区大气PM2.5持续高浓度暴露可增加中老年人群心血管代谢风险。
  • 表  1  研究对象的基本特征描述[n(%)]

    Table  1.   Description of the basic characteristics of the study participants [n(%)]

    特征 代谢风险因素聚集 合计 t/χ2 P
    年龄[(x±s),岁] 57.1±13.1 62.2±12.7 61.3±12.9 7.313 <0.001
    性别 0.031 0.859
      男 202(49.5) 984(49.0) 1 186(49.1)
      女 206(50.5) 1 023(51.0) 1 229(50.9)
    受教育程度 20.212 <0.001
      小学及以下 111(27.2) 729(36.3) 840(34.8)
      初中/高中 221(54.2) 1 039(51.8) 1 260(52.2)
      大专及以上 76(18.6) 239(11.9) 315(13.0)
    家庭年收入(万元) 25.312 <0.001
      1~<3 184(45.1) 1 138(56.7) 1 322(54.7)
      3~<10 180(31.9) 580(28.9) 710(29.4)
      ≥10 94(23.0) 289(14.4) 383(15.9)
    吸烟 0.569 0.505
      否 328(80.4) 1 580(78.7) 1 908(79.0)
      是 80(19.6) 427(21.3) 507(21.0)
    饮酒 1.277 0.290
      否 313(76.7) 1 486(74.0) 1 799(74.5)
      是 95(23.3) 521(26.0) 616(25.5)
    合计 408(16.9) 2 007(83.1) 2 415(100.0)
    下载: 导出CSV

    表  2  研究期间气象因素和大气污染物的统计学描述

    Table  2.   Statistical descriptions of meteorological factors and air pollutants during the study period

    变量 x±s P25 M P75 次数(次) 总天数(d) 平均每次持续天数(d)
    气象因素
      温度(℃) 6.3±9.4 2.1 5.2 9.1
      相对湿度(%) 55.4±18.5 41.0 57.0 69.0
    大气污染物
      PM2.5(μg/m3) 52.5±46.4 16.6 44.2 82.5
    PM2.5持续高暴露情景
      ≥75 μg/m3 623 623 1.0
      ≥75 μg/m3,持续≥2 d 157 504 3.2
      ≥75 μg/m3,持续≥3 d 91 370 4.1
      ≥P90 242 242 1.0
      ≥P90,持续≥2 d 64 168 2.6
      ≥P90,持续≥3 d 25 90 3.6
    下载: 导出CSV

    表  3  大气PM2.5持续高暴露对心血管代谢风险因素聚集的多因素Logistic回归分析

    Table  3.   Multivariate Logistic regression analysis of persistent high exposure of ambient PM2.5 on co-prevalence of cardiometabolic risk factors

    变量 OR 95% CI P
    PM2.5浓度(μg/m3) 1.04 1.01~1.08 0.019
    PM2.5持续高暴露情景
      ≥75 μg/m3 1.09 0.83~1.42 0.553
      ≥75 μg/m3,持续≥2 d 1.02 0.76~1.37 0.899
      ≥75 μg/m3,持续≥3 d 0.95 0.70~1.30 0.751
      ≥P90 1.32 0.89~1.95 0.164
      ≥P90,持续≥2 d 1.58 1.00~2.50 0.049
      ≥P90,持续≥3 d 2.57 1.27~5.22 0.009
    下载: 导出CSV

    表  4  大气PM2.5持续高暴露情景对多种心血管代谢风险因素的多因素Logistic回归分析

    Table  4.   Multivariate Logistic regression analysis of persistent high exposure of ambient PM2.5 on various cardiometabolic risk factors

    分组 风险因素聚集 血压升高 腹型肥胖 血糖升高 TG升高 HDL-C降低
    全人群 2.57(1.27~5.22) a 1.12(0.73~1.73) 1.27(0.79~2.04) 2.62(1.70~4.02) a 1.49(1.02~2.18) a 1.36(0.82~2.26)
    性别组
      男性 2.96(1.03~8.48) a 0.95(0.49~1.82) 1.37(0.73~2.57) 3.20(1.64~6.25) a 1.42(0.80~2.50) 2.08(1.09~3.96) a
      女性 2.20(0.83~5.79) 1.25(0.69~2.26) 1.05(0.50~2.19) 2.21(1.25~3.93) a 1.58(0.94~2.65) 1.14(0.64~2.01)
    年龄(岁)
      <65 1.99(0.82~4.84) 1.14(0.62~2.09) 1.56(0.75~3.24) 3.37(1.72~6.61) a 1.33(0.76~2.35) 1.96(1.08~3.55) a
      ≥65 3.17(0.94~10.7) 1.01(0.53~1.94) 1.00(0.52~1.92) 1.94(1.09~3.43) a 1.63(0.97~2.75) 1.10(0.58~2.08)
    注:PM2.5持续高暴露情景定义为浓度≥P90,持续时间≥3 d;模型调整年龄、性别、家庭年收入、受教育程度、吸烟状况、饮酒状况、日均温度、日均相对湿度;a P<0.05。
    下载: 导出CSV
  • [1] GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159): 1923-1994. DOI: 10.1016/S0140-6736(18)32225-6.
    [2] Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2018, 72(17): 2054-2070. DOI: 10.1016/j.jacc.2018.07.099.
    [3] Bowe B, Gibson AK, Xie Y, et al. Ambient fine particulate matter air pollution and risk of weight gain and obesity in United States veterans: an observational cohort study[J]. Environ Health Perspect, 2021, 129(4): 47003. DOI: 10.1289/EHP7944.
    [4] Yitshak Sade M, Kloog I, Liberty IF, et al. The association between air pollution exposure and glucose and lipids levels[J]. J Clin Endocrinol Metab, 2016, 101(6): 2460-2467. DOI: 10.1210/jc.2016-1378.
    [5] Chen H, Burnett RT, Kwong JC, et al. Spatial association between ambient fine particulate matter and incident hypertension[J]. Circulation, 2014, 129(5): 562-569. DOI: 10.1161/CIRCULATIONAHA.113.003532.
    [6] Forouzanfar MH, Alexander L, Anderson HR, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 386(10010): 2287-2323. DOI: 10.1016/S0140-6736(15)00128-2.
    [7] Brook RD, Newby DE, Rajagopalan S. Air pollution and cardiometabolic disease: an update and call for clinical trials[J]. Am J Hypertens, 2017, 31(1): 1-10. DOI: 10.1093/ajh/hpx109.
    [8] Clementi EA, Talusan A, Vaidyanathan S, et al. Metabolic syndrome and air pollution: a narrative review of their cardiopulmonary effects[J]. Toxics, 2019, 7(1): 6. DOI: 10.3390/toxics7010006.
    [9] 陈晨, 仲宇, 刘园园, 等. 2013-2018年北京市大气PM2.5持续高暴露对居民因病入院的急性影响[J]. 环境科学研究, 2021, 34(1): 213-219. DOI: 10.13198/j.issn.1001-6929.2020.11.16.

    Chen C, Zhong Y, Liu YY, et al. Impact of persistent high ambient fine particulate matters exposures on hospitalization in Beijing from 2013 to 2018[J]. Research of Environmental Sciences, 2021, 34(1): 213-219. DOI: 10.13198/j.issn.1001-6929.2020.11.16.
    [10] Chen RJ, Zhao ZH, Kan HD. Heavy smog and hospital visits in Beijing, China[J]. Am J Respir Crit Care Med, 2013, 188(9): 1170-1171. DOI: 10.1164/rccm.201304-0678LE.
    [11] Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation[J]. Diabet Med, 2006, 23(5): 469-480. DOI: 10.1111/j.1464-5491.2006.01858.x.
    [12] 黄秋敏, 姜红如, 王柳森, 等. 中国15省份15~49岁女性心血管代谢性危险因素分析[J]. 中华流行病学杂志, 2020, 41(2): 190-194. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.010.

    Huang QM, Jiang HR, Wang LS, et al. Analysis on detection status of cardio-metabolic related risk factors in women aged 15-49 years in 15 provinces in China[J]. Chin J Epidemiol, 2020, 41(2): 190-194. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.010.
    [13] Mukherjee A, Agrawal M. A global perspective of fine particulate matter pollution and its health effects[J]. Rev Environ Contam Toxicol, 2018, 244: 5-51. DOI: 10.1007/398_2017_3.
    [14] Liu XY, Bai XX, Tian HZ, et al. Fine particulate matter pollution in North China: seasonal-spatial variations, source apportionment, sector and regional transport contributions[J]. Environ Res, 2020, 184: 109368. DOI: 10.1016/j.envres.2020.109368.
    [15] 陈晨, 孙志颖, 孙庆华, 等. 2013-2015年大气PM2.5持续高暴露对中国40个区/县人群死亡的影响[J]. 中华预防医学杂志, 2019, 53(1): 76-80. DOI: 10.3760/cma.j.issn.0253-9624.2019.01.010.

    Chen C, Sun ZY, Sun QH, et al. The impact of persistent high ambient fine particulate matters exposures on mortality in the 40 districts/counties of China, 2013-2015[J]. Chin J Prev Med, 2019, 53(1): 76-80. DOI: 10.3760/cma.j.issn.0253-9624.2019.01.010.
    [16] Zhou M, He G, Fan M, et al. Smog episodes, fine particulate pollution and mortality in China[J]. Environ Res, 2015, 136: 396-404. DOI: 10.1016/j.envres.2014.09.038.
    [17] Wichmann HE. What can we learn today from the Central European smog episode of 1985 (and earlier episodes)?[J]. Int J Hyg Environ Health, 2004, 207(6): 505-520. DOI: 10.1078/1438-4639-00322.
    [18] Yusuf S, Joseph P, Rangarajan S, et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study[J]. Lancet, 2020, 395(10226): 795-808. DOI: 10.1016/S0140-6736(19)32008-2.
    [19] Shanley RP, Hayes RB, Cromar KR, et al. Particulate air pollution and clinical cardiovascular disease risk factors[J]. Epidemiology, 2016, 27(2): 291-298. DOI: 10.1097/EDE.0000000000000426.
    [20] 孔祥敏, 章军, 刘翠清. PM2.5影响代谢综合征发病的研究现状和展望[J]. 中华劳动卫生职业病杂志, 2016, 34(8): 632-636. DOI: 10.3760/cma.j.issn.1001-9391.2016.08.023.

    Kong XM, Zhang J, Liu CQ. Current progress and prospect in effects of PM2.5 on metabolic syndrome[J]. Chin J Ind Hyg Occup Dis, 2016, 34(8): 632-636. DOI: 10.3760/cma.j.issn.1001-9391.2016.08.023.
    [21] Eze IC, Hemkens LG, Bucher HC, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis[J]. Environ Health Perspect, 2015, 123(5): 381-389. DOI: 10.1289/ehp.1307823.
    [22] Yang BY, Guo YM, Markevych I, et al. Association of long-term exposure to ambient air pollutants with risk factors for cardiovascular disease in China[J]. JAMA Network Open, 2019, 2(3): e190318. DOI: 10.1001/jamanetworkopen.2019.0318.
    [23] Huang PL. A comprehensive definition for metabolic syndrome[J]. Dis Model Mech, 2009, 2(5-6): 231-237. DOI: 10.1242/dmm.001180.
    [24] Miller MR. The role of oxidative stress in the cardiovascular actions of particulate air pollution[J]. Biochem Soc Trans, 2014, 42(4): 1006-1011. DOI: 10.1042/BST20140090.
    [25] Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights[J]. Diabetes, 2012, 61(12): 3037-3045. DOI: 10.2337/db12-0190.
    [26] Kim JS, Chen Z, Alderete TL, et al. Associations of air pollution, obesity and cardiometabolic health in young adults: The Meta-AIR study[J]. Environ Int, 2019, 133(Pt A): 105180. DOI: 10.1016/j.envint.2019.105180.
    [27] Clougherty JE. A growing role for gender analysis in air pollution epidemiology[J]. Environ Health Perspect, 2010, 118(2): 167-176. DOI: 10.1289/ehp.0900994.
    [28] Cohen L, Curhan GC, Forman JP. Influence of age on the association between lifestyle factors and risk of hypertension[J]. J Am Soc Hypertens, 2012, 6(4): 284-290. DOI: 10.1016/j.jash.2012.06.002.
    [29] Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression dilution bias[J]. BMJ, 2010, 340: c2289. DOI: 10.1136/bmj.c2289.
  • 加载中
计量
  • 文章访问数:  562
  • HTML全文浏览量:  405
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-08-02
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2021-10-10

目录

    /

    返回文章
    返回