Impact of persistent high ambient fine particulate matters exposure on cardiometabolic risk factors among middle-aged and elderly people
-
摘要:
目的 探索京津冀及周边地区大气中细颗粒物(fine particulate matters, PM2.5)持续高暴露对中老年人群心血管代谢风险的影响。 方法 于2017年4月9日―2019年3月31日在京津冀及周边共6个省、市开展横断面调查,选择40~<90岁社区中老年人作为研究对象,共计2 415名。通过问卷调查获取居民个人基本情况、社会经济状况和生活方式等信息,通过体格检查以获得腰围、血压、FPG、TG和HDL-C水平,根据2005年国际糖尿病联盟发布的共识声明定义代谢风险因素聚集。以PM2.5日均浓度≥75 μg/m3、≥各县、区参与调查当天PM2.5日均浓度的P90及不同持续时间(≥2 d和≥3 d)定义PM2.5高暴露情景和持续状态。采用Logistic回归分析模型分析大气PM2.5持续高暴露对人群心血管代谢风险聚集的影响。 结果 大气PM2.5持续高暴露与人群代谢风险聚集风险存在关联,尤其是PM2.5浓度≥P90且持续2 d、3 d以上时可观察到具有统计学意义的结果,人群代谢风险因素聚集影响的OR(95% CI)值分别为1.58(1.00~2.50)和2.57(1.27~5.22)。其中FPG上升、TG水平上升是较为敏感的代谢风险因素。亚组分析结果显示,PM2.5持续高暴露对男性和<65岁人群代谢风险的影响更强。 结论 京津冀及周边地区大气PM2.5持续高浓度暴露可增加中老年人群心血管代谢风险。 Abstract:Objective To explore the effects of persistent high exposure of fine particulate matters (PM2.5) on cardiometabolic risk factors among middle-aged and older people in Beijing-Tianjin-Hebei and surrounding regions. Methods A cross-sectional survey was conducted from April 9th, 2017 to March 31st, 2019 in 6 Provinces in Beijing-Tianjin-Hebei and the surrounding areas. A total of 2 415 middle-aged and elderly people aged 40 to 89 years were recruited as the research participants. Questionnaire survey was conducted to obtain the basic information, socioeconomic and lifestyle of the participants. Physical examination was carried out to obtain waist circumference, levels of fasting blood glucose, blood pressure, triglycerides and high-density lipoprotein cholesterol. According to the consensus statement from the International Diabetes Federation in 2005, the co-prevalence of cardiometabolic risk factors was defined. Daily mean PM2.5 concentrations ≥75 μg/m3, ≥90th percentile of daily mean PM2.5 concentrations in each County during the survey year and various durations (≥2 d or ≥3 d) were used to define PM2.5 high exposure scenarios and persistent states. Logistic regression model was used to analyze the effects of persistent high exposure of PM2.5 on co-prevalence of cardiometabolic risk factors. Results Persistent high exposure of PM2.5 was significantly associated with the co-prevalence of cardiometabolic factors, especially when extreme pollution scenario was defined by P90 and lasted for more than 2 days and 3 days, OR value (95% CI) of elevated risk of co-prevalence of cardiometabolic factors were 1.58 (1.00-2.50) and 2.57 (1.27-5.22), respectively. The increase of blood glucose and triglyceride level were more sensitive metabolic risk factors. Moreover, subgroup analysis showed that persistent high PM2.5 exposure had a more substantial impact on cardiometabolic risks in males and people under 65 years. Conclusions Persistent high exposure of PM2.5 in Beijing-Tianjin-Hebei and surrounding regions in China can significantly increase cardiometabolic risks in middle-aged and older people. -
Key words:
- Fine particulate matter /
- Heavy pollution /
- Cardiometabolic risk factors
-
表 1 研究对象的基本特征描述[n(%)]
Table 1. Description of the basic characteristics of the study participants [n(%)]
特征 代谢风险因素聚集 合计 t/χ2值 P值 否 是 年龄[(x±s),岁] 57.1±13.1 62.2±12.7 61.3±12.9 7.313 <0.001 性别 0.031 0.859 男 202(49.5) 984(49.0) 1 186(49.1) 女 206(50.5) 1 023(51.0) 1 229(50.9) 受教育程度 20.212 <0.001 小学及以下 111(27.2) 729(36.3) 840(34.8) 初中/高中 221(54.2) 1 039(51.8) 1 260(52.2) 大专及以上 76(18.6) 239(11.9) 315(13.0) 家庭年收入(万元) 25.312 <0.001 1~<3 184(45.1) 1 138(56.7) 1 322(54.7) 3~<10 180(31.9) 580(28.9) 710(29.4) ≥10 94(23.0) 289(14.4) 383(15.9) 吸烟 0.569 0.505 否 328(80.4) 1 580(78.7) 1 908(79.0) 是 80(19.6) 427(21.3) 507(21.0) 饮酒 1.277 0.290 否 313(76.7) 1 486(74.0) 1 799(74.5) 是 95(23.3) 521(26.0) 616(25.5) 合计 408(16.9) 2 007(83.1) 2 415(100.0) 表 2 研究期间气象因素和大气污染物的统计学描述
Table 2. Statistical descriptions of meteorological factors and air pollutants during the study period
变量 x±s P25 M P75 次数(次) 总天数(d) 平均每次持续天数(d) 气象因素 温度(℃) 6.3±9.4 2.1 5.2 9.1 相对湿度(%) 55.4±18.5 41.0 57.0 69.0 大气污染物 PM2.5(μg/m3) 52.5±46.4 16.6 44.2 82.5 PM2.5持续高暴露情景 ≥75 μg/m3 623 623 1.0 ≥75 μg/m3,持续≥2 d 157 504 3.2 ≥75 μg/m3,持续≥3 d 91 370 4.1 ≥P90 242 242 1.0 ≥P90,持续≥2 d 64 168 2.6 ≥P90,持续≥3 d 25 90 3.6 表 3 大气PM2.5持续高暴露对心血管代谢风险因素聚集的多因素Logistic回归分析
Table 3. Multivariate Logistic regression analysis of persistent high exposure of ambient PM2.5 on co-prevalence of cardiometabolic risk factors
变量 OR值 95% CI值 P值 PM2.5浓度(μg/m3) 1.04 1.01~1.08 0.019 PM2.5持续高暴露情景 ≥75 μg/m3 1.09 0.83~1.42 0.553 ≥75 μg/m3,持续≥2 d 1.02 0.76~1.37 0.899 ≥75 μg/m3,持续≥3 d 0.95 0.70~1.30 0.751 ≥P90 1.32 0.89~1.95 0.164 ≥P90,持续≥2 d 1.58 1.00~2.50 0.049 ≥P90,持续≥3 d 2.57 1.27~5.22 0.009 表 4 大气PM2.5持续高暴露情景对多种心血管代谢风险因素的多因素Logistic回归分析
Table 4. Multivariate Logistic regression analysis of persistent high exposure of ambient PM2.5 on various cardiometabolic risk factors
分组 风险因素聚集 血压升高 腹型肥胖 血糖升高 TG升高 HDL-C降低 全人群 2.57(1.27~5.22) a 1.12(0.73~1.73) 1.27(0.79~2.04) 2.62(1.70~4.02) a 1.49(1.02~2.18) a 1.36(0.82~2.26) 性别组 男性 2.96(1.03~8.48) a 0.95(0.49~1.82) 1.37(0.73~2.57) 3.20(1.64~6.25) a 1.42(0.80~2.50) 2.08(1.09~3.96) a 女性 2.20(0.83~5.79) 1.25(0.69~2.26) 1.05(0.50~2.19) 2.21(1.25~3.93) a 1.58(0.94~2.65) 1.14(0.64~2.01) 年龄(岁) <65 1.99(0.82~4.84) 1.14(0.62~2.09) 1.56(0.75~3.24) 3.37(1.72~6.61) a 1.33(0.76~2.35) 1.96(1.08~3.55) a ≥65 3.17(0.94~10.7) 1.01(0.53~1.94) 1.00(0.52~1.92) 1.94(1.09~3.43) a 1.63(0.97~2.75) 1.10(0.58~2.08) 注:PM2.5持续高暴露情景定义为浓度≥P90,持续时间≥3 d;模型调整年龄、性别、家庭年收入、受教育程度、吸烟状况、饮酒状况、日均温度、日均相对湿度;a P<0.05。 -
[1] GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159): 1923-1994. DOI: 10.1016/S0140-6736(18)32225-6. [2] Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2018, 72(17): 2054-2070. DOI: 10.1016/j.jacc.2018.07.099. [3] Bowe B, Gibson AK, Xie Y, et al. Ambient fine particulate matter air pollution and risk of weight gain and obesity in United States veterans: an observational cohort study[J]. Environ Health Perspect, 2021, 129(4): 47003. DOI: 10.1289/EHP7944. [4] Yitshak Sade M, Kloog I, Liberty IF, et al. The association between air pollution exposure and glucose and lipids levels[J]. J Clin Endocrinol Metab, 2016, 101(6): 2460-2467. DOI: 10.1210/jc.2016-1378. [5] Chen H, Burnett RT, Kwong JC, et al. Spatial association between ambient fine particulate matter and incident hypertension[J]. Circulation, 2014, 129(5): 562-569. DOI: 10.1161/CIRCULATIONAHA.113.003532. [6] Forouzanfar MH, Alexander L, Anderson HR, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 386(10010): 2287-2323. DOI: 10.1016/S0140-6736(15)00128-2. [7] Brook RD, Newby DE, Rajagopalan S. Air pollution and cardiometabolic disease: an update and call for clinical trials[J]. Am J Hypertens, 2017, 31(1): 1-10. DOI: 10.1093/ajh/hpx109. [8] Clementi EA, Talusan A, Vaidyanathan S, et al. Metabolic syndrome and air pollution: a narrative review of their cardiopulmonary effects[J]. Toxics, 2019, 7(1): 6. DOI: 10.3390/toxics7010006. [9] 陈晨, 仲宇, 刘园园, 等. 2013-2018年北京市大气PM2.5持续高暴露对居民因病入院的急性影响[J]. 环境科学研究, 2021, 34(1): 213-219. DOI: 10.13198/j.issn.1001-6929.2020.11.16.Chen C, Zhong Y, Liu YY, et al. Impact of persistent high ambient fine particulate matters exposures on hospitalization in Beijing from 2013 to 2018[J]. Research of Environmental Sciences, 2021, 34(1): 213-219. DOI: 10.13198/j.issn.1001-6929.2020.11.16. [10] Chen RJ, Zhao ZH, Kan HD. Heavy smog and hospital visits in Beijing, China[J]. Am J Respir Crit Care Med, 2013, 188(9): 1170-1171. DOI: 10.1164/rccm.201304-0678LE. [11] Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation[J]. Diabet Med, 2006, 23(5): 469-480. DOI: 10.1111/j.1464-5491.2006.01858.x. [12] 黄秋敏, 姜红如, 王柳森, 等. 中国15省份15~49岁女性心血管代谢性危险因素分析[J]. 中华流行病学杂志, 2020, 41(2): 190-194. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.010.Huang QM, Jiang HR, Wang LS, et al. Analysis on detection status of cardio-metabolic related risk factors in women aged 15-49 years in 15 provinces in China[J]. Chin J Epidemiol, 2020, 41(2): 190-194. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.010. [13] Mukherjee A, Agrawal M. A global perspective of fine particulate matter pollution and its health effects[J]. Rev Environ Contam Toxicol, 2018, 244: 5-51. DOI: 10.1007/398_2017_3. [14] Liu XY, Bai XX, Tian HZ, et al. Fine particulate matter pollution in North China: seasonal-spatial variations, source apportionment, sector and regional transport contributions[J]. Environ Res, 2020, 184: 109368. DOI: 10.1016/j.envres.2020.109368. [15] 陈晨, 孙志颖, 孙庆华, 等. 2013-2015年大气PM2.5持续高暴露对中国40个区/县人群死亡的影响[J]. 中华预防医学杂志, 2019, 53(1): 76-80. DOI: 10.3760/cma.j.issn.0253-9624.2019.01.010.Chen C, Sun ZY, Sun QH, et al. The impact of persistent high ambient fine particulate matters exposures on mortality in the 40 districts/counties of China, 2013-2015[J]. Chin J Prev Med, 2019, 53(1): 76-80. DOI: 10.3760/cma.j.issn.0253-9624.2019.01.010. [16] Zhou M, He G, Fan M, et al. Smog episodes, fine particulate pollution and mortality in China[J]. Environ Res, 2015, 136: 396-404. DOI: 10.1016/j.envres.2014.09.038. [17] Wichmann HE. What can we learn today from the Central European smog episode of 1985 (and earlier episodes)?[J]. Int J Hyg Environ Health, 2004, 207(6): 505-520. DOI: 10.1078/1438-4639-00322. [18] Yusuf S, Joseph P, Rangarajan S, et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study[J]. Lancet, 2020, 395(10226): 795-808. DOI: 10.1016/S0140-6736(19)32008-2. [19] Shanley RP, Hayes RB, Cromar KR, et al. Particulate air pollution and clinical cardiovascular disease risk factors[J]. Epidemiology, 2016, 27(2): 291-298. DOI: 10.1097/EDE.0000000000000426. [20] 孔祥敏, 章军, 刘翠清. PM2.5影响代谢综合征发病的研究现状和展望[J]. 中华劳动卫生职业病杂志, 2016, 34(8): 632-636. DOI: 10.3760/cma.j.issn.1001-9391.2016.08.023.Kong XM, Zhang J, Liu CQ. Current progress and prospect in effects of PM2.5 on metabolic syndrome[J]. Chin J Ind Hyg Occup Dis, 2016, 34(8): 632-636. DOI: 10.3760/cma.j.issn.1001-9391.2016.08.023. [21] Eze IC, Hemkens LG, Bucher HC, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis[J]. Environ Health Perspect, 2015, 123(5): 381-389. DOI: 10.1289/ehp.1307823. [22] Yang BY, Guo YM, Markevych I, et al. Association of long-term exposure to ambient air pollutants with risk factors for cardiovascular disease in China[J]. JAMA Network Open, 2019, 2(3): e190318. DOI: 10.1001/jamanetworkopen.2019.0318. [23] Huang PL. A comprehensive definition for metabolic syndrome[J]. Dis Model Mech, 2009, 2(5-6): 231-237. DOI: 10.1242/dmm.001180. [24] Miller MR. The role of oxidative stress in the cardiovascular actions of particulate air pollution[J]. Biochem Soc Trans, 2014, 42(4): 1006-1011. DOI: 10.1042/BST20140090. [25] Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights[J]. Diabetes, 2012, 61(12): 3037-3045. DOI: 10.2337/db12-0190. [26] Kim JS, Chen Z, Alderete TL, et al. Associations of air pollution, obesity and cardiometabolic health in young adults: The Meta-AIR study[J]. Environ Int, 2019, 133(Pt A): 105180. DOI: 10.1016/j.envint.2019.105180. [27] Clougherty JE. A growing role for gender analysis in air pollution epidemiology[J]. Environ Health Perspect, 2010, 118(2): 167-176. DOI: 10.1289/ehp.0900994. [28] Cohen L, Curhan GC, Forman JP. Influence of age on the association between lifestyle factors and risk of hypertension[J]. J Am Soc Hypertens, 2012, 6(4): 284-290. DOI: 10.1016/j.jash.2012.06.002. [29] Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression dilution bias[J]. BMJ, 2010, 340: c2289. DOI: 10.1136/bmj.c2289.