• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气粗颗粒物与中国多城市抑郁症每日住院人数、费用和天数的关联

马亚婷 徐洲阳 倪晓莉 郭新彪 吴少伟

马亚婷, 徐洲阳, 倪晓莉, 郭新彪, 吴少伟. 大气粗颗粒物与中国多城市抑郁症每日住院人数、费用和天数的关联[J]. 中华疾病控制杂志, 2021, 25(10): 1147-1153. doi: 10.16462/j.cnki.zhjbkz.2021.10.006
引用本文: 马亚婷, 徐洲阳, 倪晓莉, 郭新彪, 吴少伟. 大气粗颗粒物与中国多城市抑郁症每日住院人数、费用和天数的关联[J]. 中华疾病控制杂志, 2021, 25(10): 1147-1153. doi: 10.16462/j.cnki.zhjbkz.2021.10.006
MA Ya-ting, XU Zhou-yang, NI Xiao-li, GUO Xin-biao, WU Shao-wei. Association of ambient coarse particulate matter with hospital admissions, related expenditures and stays for depression in China: a multicity study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(10): 1147-1153. doi: 10.16462/j.cnki.zhjbkz.2021.10.006
Citation: MA Ya-ting, XU Zhou-yang, NI Xiao-li, GUO Xin-biao, WU Shao-wei. Association of ambient coarse particulate matter with hospital admissions, related expenditures and stays for depression in China: a multicity study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(10): 1147-1153. doi: 10.16462/j.cnki.zhjbkz.2021.10.006

大气粗颗粒物与中国多城市抑郁症每日住院人数、费用和天数的关联

doi: 10.16462/j.cnki.zhjbkz.2021.10.006
基金项目: 

国家自然科学基金 82073509

详细信息
    通讯作者:

    吴少伟,E-mail: shaowei_wu@xjtu.edu.cn

  • 中图分类号: R181;R122.2;R749

Association of ambient coarse particulate matter with hospital admissions, related expenditures and stays for depression in China: a multicity study

Funds: 

National Natural Science Foundation of China 82073509

More Information
  • 摘要:   目的  基于中国城镇职工基本医疗保险和城镇居民基本医疗保险数据库,分析大气粗颗粒物(coarse particulate matter, PM2.5-10)短期暴露与中国部分城市人群抑郁症住院人数、费用与天数的关联。  方法  基于2013―2017年中国56个地级及以上城市大气PM2.5-10数据及抑郁症住院信息,进行两阶段时间序列分析。使用广义相加模型控制星期几效应、节假日效应、长期趋势、气象因素等混杂因素后,分别分析各城市大气PM2.5-10短期暴露对抑郁症住院人数影响,并采用随机效应模型综合不同城市结果,进而计算住院人数、住院费用和住院天数的归因数及归因百分比。  结果  研究共纳入56个城市82 708例抑郁症住院患者信息。大气PM2.5-10短期暴露与抑郁症住院人数、费用与天数之间存在正向关联。在lag0、lag02和lag03时间窗上,大气PM2.5-10短期暴露浓度每升高10 μg/m3,抑郁症住院人数分别增加0.58%(95% CI: 0.04%~1.12%)、1.20%(95% CI: 0.10%~2.29%)和1.20%(95% CI: 0.01%~2.39%)。其中在lag03时间窗,住院人数、费用和天数归因于PM2.5-10短期暴露的百分比达到最大,分别为4.14%(95% CI: 0.04%~8.03%)、3.67%(95% CI: 0.03%~7.14%)和3.89%(95% CI: 0.04%~7.54%);平均每个患者因PM2.5-10短期暴露导致的归因住院费用和天数分别为483.77(95% CI: 4.49~940.63)元和1.03(95% CI: 0.01~1.99) d。  结论  短期暴露于大气粗颗粒物与中国城市人群抑郁症住院人数、费用和天数的增加有关。
  • 图  1  不同滞后时间窗大气PM2.5-10浓度每升高10 μg/m3对应的抑郁症住院人数的百分比变化及其95% CI

    Figure  1.  The percentage change and 95% CI of the number of hospitalized depression patients corresponding to a 10 μg/m3 increase in atmospheric PM2.5-10 concentration in different lag time windows

    表  1  2013―2017年中国56个城市抑郁症住院人数、费用和天数的分布[n(%)]

    Table  1.   The distribution of the number of hospitalizations, expenditures and days of depression in 56 cities in China from 2013 to 2017 [n(%)]

    分类 住院人数(人) 住院费用(万元) 住院天数(万天)
    地理区域
      北方城市 41 378(50.03) 54 899.23(50.35) 94.67(43.48)
      南方城市 41 330(49.97) 54 134.90(49.65) 123.04(56.52)
    性别a
      男 25 084(30.33) 32 267.81(29.59) 73.32(33.68)
      女 41 890(50.65) 55 930.85(51.30) 113.73(52.24)
    年龄(岁) a
      0~<19 1 094(1.32) 1 699.79(1.56) 5.86(2.69)
      19~<40 10 609(12.83) 17 680.66(16.22) 38.33(17.61)
      40~<65 39 692(47.99) 47 542.80(43.60) 97.36(44.72)
      ≥65 15 579(18.84) 21 275.42(19.51) 45.49(20.89)
    季节
      温暖季节 41 578(50.27) 58 670.82(53.81) 105.96(48.67)
      寒冷季节 41 130(49.73) 50 363.31(46.19) 111.75(51.33)
    合计 82 708(100.00) 109 034.13(100.00) 217.71(100.00)
    注:a性别、年龄分组住院数据统计去除了缺失分组信息的个体
    下载: 导出CSV

    表  2  2013―2017年中国56个城市日均大气PM2.5-10及气象因素水平分布

    Table  2.   Distribution of average daily atmospheric PM2.5-10 and meteorological factors in 56 cities in China from 2013 to 2017

    气象因素 平均值 标准差 最小值 中位数 最大值 Q a
    PM2.5-10日均浓度(μg/m3)
      北方城市 49.65 32.34 0.00 43.22 726.20 39.22
      南方城市 27.44 19.68 0.00 23.15 1259.50 19.53
      总体 38.35 28.88 0.00 30.63 1259.50 31.96
    日均气温(℃)
      北方城市 11.46 11.69 -28.90 12.90 35.30 19.30
      南方城市 18.14 8.32 -6.60 19.20 36.10 13.60
      总体 14.92 10.62 -28.90 16.50 36.10 15.90
    日均相对湿度(%)
      北方城市 62.72 18.08 7.00 64.00 100.00 28.00
      南方城市 75.38 13.86 17.00 77.00 100.00 20.00
      总体 69.28 17.24 7.00 71.00 100.00 24.00
    注:a即四分位数间距(inter-quartile range)。
    下载: 导出CSV

    表  3  双污染物模型中不同滞后时间窗大气PM2.5-10浓度每升高10 μg/m3对应的抑郁症住院人数的百分比变化及其95% CI

    Table  3.   The percentage change and 95% CI of the number of hospitalized depression patients corresponding to each increase of 10 μg/m3 of atmospheric PM2.5-10 concentration in the dual-pollutant model with different lag time windows

    滞后时间窗 单污染物模型(%) 调整PM2.5(%) 调整CO(%) 调整SO2(%) 调整O3(%) 调整NO2(%)
    lag0 0.58(0.04~1.12) 0.41(-0.03~0.86) 0.35(-0.13~0.83) 0.48(-0.06~1.02) 0.39(-0.06~0.84) 0.29(-0.21~0.78)
    lag02 1.20(0.10~2.29) 0.77(0.05~1.49) 0.78(-0.02~1.59) 0.76(-0.09~1.61) 0.75(0.05~1.46) 0.54(-0.23~1.31)
    lag03 1.20(0.01~2.39) 0.82(0.07~1.58) 0.86(0.03~1.69) 0.78(-0.09~1.65) 0.82(0.08~1.56) 0.62(-0.16~1.40)
    下载: 导出CSV

    表  4  不同滞后时间窗与大气PM2.5-10相关抑郁症住院人数、费用和天数的归因数、归因百分比及其95% CI

    Table  4.   The attributable number, attribution percentage and 95% CI of the number of hospitalizations, expenditures and days of depression related to atmospheric PM2.5-10 with different lag time windows

    结果类型 住院人数(人) 住院费用(万元) 住院天数(万天) 平均住院费用(元) 平均住院天数(d)
    lag0
      归因数 1 680(117~3 206) 1 962.83(136.88~3 749.18) 4.17(0.29~7.96) 237.32(16.55~453.30) 0.50(0.04~0.96)
      归因百分比(%) 2.03(0.14~3.88) 1.80(0.13~3.44) 1.91(0.13~3.65)
    lag02
      归因数 3 412(302~6 378) 3 991.22(353.01~7 472.64) 8.47(0.75~15.82) 482.57(42.68~903.74) 1.02(0.09~1.91)
      归因百分比(%) 4.13(0.37~7.71) 3.66(0.32~6.85) 3.88(0.34~7.25)
    lag03
      归因数 3 421(32~6 640) 4 001.16(37.13~7 779.78) 8.49(0.08~16.47) 483.77(4.49~940.63) 1.03(0.01~1.99)
      归因百分比(%) 4.14(0.04~8.03) 3.67(0.03~7.14) 3.89(0.04~7.54)
    下载: 导出CSV

    表  5  不同亚组大气PM2.5-10浓度每升高10 μg/m3对应的抑郁症住院人数的百分比变化及其95% CI(%)

    Table  5.   Percentage change and 95% CI of the number of hospitalized depression patients corresponding to each increase of atmospheric PM2.5-10 concentration by 10 μg/m3 in different subgroups (%)

    变量 Lag02 Lag03
    地理区域
      北方城市 0.78(-0.72~2.28) 1.00(-0.51~2.51)
      南方城市 1.86(0.26~3.46) 1.49(-0.50~3.48)
      Z 0.927 0.207
      P 0.335 0.649
    性别
      男 1.22(0.07~2.37) 1.30(0.05~2.55)
      女 0.72(-0.46~1.89) 0.69(-0.61~1.98)
      Z 0.361 0.450
      P 0.548 0.501
    年龄(岁)
      19~<40 2.74(1.31~4.17) 2.32(-0.29~4.94)
      40~<65 0.90(-0.42~2.21) 1.14(-0.39~2.67)
      ≥65 1.44(0.09~2.79) 1.96(0.34~3.59)
      Z 0.623 0.834
      P 0.172 0.661
    季节
      温暖季节 -0.73(-2.10~0.65) -0.26(-2.14~1.63)
      寒冷季节 2.11(0.58~3.63) 1.52(-0.04~3.08)
      Z 7.503 2.571
      P 0.006 0.148
    下载: 导出CSV

    表  6  大气PM2.5-10短期暴露与抑郁症住院人数关联的荟萃回归结果及其95% CI(%)

    Table  6.   The regression results of the the association between short-term exposure to atmospheric PM2.5-10 and the number of hospitalized depression patients and its 95% CI (%)

    变量 lag02 lag03
    地理区域
      北方城市 -1.07(-3.33~1.19) -0.62(-3.09~1.86)
      南方城市 0.00 0.00
    性别
      男 0.63(-1.04~2.31) 0.41(-1.49~2.31)
      女 0.00 0.00
    年龄(岁)
      19~<40 1.30(-0.69~3.30) 0.35(-2.99~3.68)
      40~<65 -0.66(-2.36~1.05) -1.00(-3.21~1.21)
      ≥65 0.00 0.00
    季节
      温暖季节 0.00 0.00
      寒冷季节 2.77(0.66~4.88) 1.95(-0.48~4.38)
    下载: 导出CSV
  • [1] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
    [2] 中华人民共和国国家卫生健康委员会. 国务院新闻办公室2020年12月23日新闻发布会文字实录[EB/OL]. (2020-12-23)[2021-04-23]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=bc4379ddf4324e7f86f05d31cc1c4982.

    National Health Commission of the People's Republic of China. Transcript of the press conference of the State Council Information Office on December 23, 2020[EB/OL]. (2020-12-23)[2021-04-23]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=bc4379ddf4324e7f86f05d31cc1c4982.
    [3] Gu X, Guo T, Si Y, et al. Association between ambient air pollution and daily hospital admissions for depression in 75 Chinese cities[J]. Am J Psychiatry, 2020, 177(8): 735-743. DOI: 10.1176/appi.ajp.2020.19070748.
    [4] Szyszkowicz M, Kousha T, Kingsbury M, et al. Air pollution and emergency department visits for depression: a multicity case-crossover study[J]. Environ Health Insights, 2016, 10: 155-161. DOI: 10.4137/EHI.S40493.
    [5] Pun VC, Manjourides J, Suh H. Association of ambient air pollution with depressive and anxiety symptoms in older adults: results from the NSHAP study[J]. Environ Health Perspect, 2017, 125(3): 328-342. DOI: 10.1289/EHP494.
    [6] Liu Q, Wang W, Gu X, et al. Association between particulate matter air pollution and risk of depression and suicide: a systematic review and meta-analysis[J]. Environ Sci Pollut Res Int, 2021, 28(8): 9029-9049. DOI: 10.1007/s11356-021-12357-3.
    [7] Chen R, Yin P, Meng X, et al. Associations between coarse particulate matter air pollution and cause-specific mortality: a nationwide analysis in 272 Chinese cities[J]. Environ Health Perspect, 2019, 127(1): 17008. DOI: 10.1289/EHP2711.
    [8] Vicedo-Cabrera AM, Sera F, Liu C, et al. Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries[J]. BMJ, 2020, 368: m108. DOI: 10.1136/bmj.m108.
    [9] Tian Y, Liu H, Wu Y, et al. Association between ambient fine particulate pollution and hospital admissions for cause specific cardiovascular disease: time series study in 184 major Chinese cities[J]. BMJ, 2019, 367: l6572. DOI: 10.1136/bmj.l6572.
    [10] 张天嵩, 张苏贤. 如何实现Meta分析中不同亚组合并效应量的比较[J]. 中国循证医学杂志, 2017, 17(12): 1465-1470. DOI: 10.7507/1672-2531.201705103.

    Zhang TS, Zhang SX. How to realize the comparison of different sub combinations and effect quantities in meta-analysis[J]. Chin J Evi Med, 2017, 17(12): 1465-1470. DOI: 10.7507/1672-2531.201705103.
    [11] Chen C, Liu C, Chen R, et al. Ambient air pollution and daily hospital admissions for mental disorders in Shanghai, China[J]. Sci Total Environ, 2018, 613-614: 324-330. DOI: 10.1016/j.scitotenv.2017.09.098.
    [12] Wang F, Liu H, Li H, et al. Ambient concentrations of particulate matter and hospitalization for depression in 26 Chinese cities: a case-crossover study[J]. Environ Int, 2018, 114: 115-122. DOI: 10.1016/j.envint.2018.02.012.
    [13] Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association[J]. Circulation, 2010, 121(21): 2331-2378. DOI: 10.1161/CIR.0b013e3181dbece1.
    [14] Chu C, Zhang H, Cui S, et al. Ambient PM2.5 caused depressive-like responses through Nrf2/NLRP3 signaling pathway modulating inflammation[J]. J Hazard Mater, 2019, 369: 180-190. DOI: 10.1016/j.jhazmat.2019.02.026.
    [15] Fonken LK, Xu X, Weil ZM, et al. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology[J]. Mol Psychiatry, 2011, 16(10): 987-995, 973. DOI: 10.1038/mp.2011.76.
    [16] Block ML, Wu X, Pei Z, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase[J]. FASEB J, 2004, 18(13): 1618-1620. DOI: 10.1096/fj.04-1945fje.
    [17] Hasler G. Pathophysiology of depression: do we have any solid evidence of interest to clinicians?[J]. World psychiatry, 2010, 9(3): 155-161. DOI: 10.1002/j.2051-5545.2010.tb00298.x.
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  209
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-26
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2021-10-10

目录

    /

    返回文章
    返回