Study on the relationship between reduced short-term memory and peripheral blood Aβ1-42 protein concentration in occupationally people who were exposed to 50 Hz power frequency electromagnetic field
-
摘要:
目的 研究50 Hz工频电磁场致职业暴露人群短时记忆力降低与外周血中Aβ1-42(beta-amyloid peptide 1-42)蛋白浓度的关系。 方法 选取51名火电厂电气运行人员为暴露组,26名同厂行政办公人员为对照组,两组人员均进行短时记忆力测试,同时测定外周血中Aβ1-42蛋白浓度,比较两组中相关指标的差异及相关性。 结果 暴露组8 h时间加权平均电场强度为1.690 kV/m,磁场强度为4.578 μT。对照组8 h时间加权平均电场强度为0.008 kV/m,磁场强度为0.026 μT。两组人员数字跨度得分暴露组低于对照组(t=3.702,P < 0.001);暴露组失眠出现率(15.69%)和记忆力减退出现率(21.57%)均高于对照组(均有P < 0.05);三项情感状态指标得分暴露组低于对照组:愤怒-敌意(t=2.239,P=0.028)、疲劳-惰性(t=2.024,P=0.047)、困惑-迷茫(t=2.489,P=0.015);外周血中Aβ1-42蛋白浓度(pg/mL)暴露组高于对照组(t=-2.414,P=0.018)。数字跨度得分与Aβ1-42蛋白浓度的变化并未发现相关关系(r=-0.173,P=0.133)。 结论 50 Hz工频电磁场可致职业人群短时记忆力损伤,并引起外周血中Aβ1-42蛋白浓度变化,但两者之间是否存在因果关系尚需进一步研究确定。 Abstract:Objective To study the relationship between reduced short-term memory and peripheral blood Aβ1-42 protein concentration induced by a 50 Hz power frequency electromagnetic field. Methods Fifty-one thermal power plant electrical operators were selected as the exposure group, and twenty-six administrative staffs of the same plant were selected as the control group. Both groups were tested for short-term memory, and the concentration of Aβ1-42 protein in peripheral blood was measured simultaneously. The correlation between the two groups was compared. Results The 8 h time-weighted average intensity of the exposed group was 1.690 kV/m, and the magnetic field intensity was 4.578 μT. In the control group, the average electric field strength was 0.008 kV/m, and the magnetic field strength was 0.026 μT for 8h time-weighted average electric field intensity. The digit span score of the two groups in the exposed group was significantly lower than that in the control group (t=3.702, P < 0.001); the incidence of autonomic symptoms of insomnia (15.69%) and memory loss (21.57%) in the exposed group was significantly higher than the control group (all P < 0.05); the scores of three emotional state indicators in the exposed group were significantly lower than those in the control group, which incllding anger-hostility (t=2.239, P=0.028), fatigue-inert (t=2.024, P=0.047), and confusion-confusion (t=2.489, P=0.015); Aβ1-42 protein concentration in peripheral blood (pg/mL) with significantly higher in exposure group when compared to the control group (t=-2.414, P=0.018). No correlation was found between digital span scores and changes in Aβ1-42 protein concentration (r=-0.173, P=0.133). Conclusions 50 Hz power frequency electromagnetic field can cause short-term memory impairment in the occupational population and change the concentration of Aβ1-42 protein in peripheral blood. However, the causal relationship between them needs further study. -
表 1 研究对象分布情况
Table 1. Distribution of the research subjects
个体特征 暴露组 对照组 合计 χ2/t值 P值 性别 6.708 0.010 男 37 11 48 女 14 15 29 吸烟情况 1.512 0.219 吸烟 30 19 49 不吸烟 21 7 28 饮酒情况 0.007 0.935 饮酒 26 13 39 不饮酒 25 13 38 年龄(x±s,岁) 43±8 43±8 -0.106 0.916 表 2 不同组别的自主症状差异情况
Table 2. Differences in autonomous symptoms between different groups
症状 暴露组 对照组 P值a N n % N n % 头晕 51 2 3.92 26 1 3.85 1.000 嗜睡 51 5 9.80 26 0 0.00 0.161 易醒 51 9 17.65 26 1 3.85 0.151 易疲劳 51 8 15.69 26 5 19.23 0.752 易激动 51 5 9.80 26 2 7.69 1.000 失眠 51 8 15.69 26 0 0.00 0.046 b 多梦 51 11 21.57 26 1 3.85 0.051 记忆力减退 51 11 21.57 26 0 0.00 0.013 b 注意力不集中 51 7 13.73 26 0 0.00 0.088 注:a表示计算精确概率; b表示双侧检验P < 0.05。 表 3 情感状态和神经行为的得分比较
Table 3. Comparison of scores between emotional state and neuro-behavioral
测试项目 暴露组 对照组 P值 标准化系数Beta 校正P值a N 得分(x±s, 分) N 得分(x±s, 分) 紧张-焦虑 51 42.1±7.2 26 44.7±4.0 0.085 0.237 0.063 愤怒-敌意 51 42.6±8.0 26 45.8±4.6 0.067 0.273 0.028 疲劳-惰性 51 42.0±7.9 26 45.3±3.7 0.014 0.249 0.047 抑郁-沮丧 51 43.8±7.2 26 46.2±4.7 0.083 0.206 0.107 有力-好动 51 57.7±4.6 26 59.3±4.2 0.132 0.095 0.413 困惑-迷茫 51 41.3±7.2 26 45.1±3.7 0.003 0.302 0.015 数字译码 51 58.9±2.3 26 59.6±2.2 0.176 0.110 0.310 目标追踪 51 58.6±2.8 26 58.0±2.6 0.424 -0.093 0.417 数字跨度 51 58.6±1.8 26 59.8±2.0 <0.001 0.361 <0.001 注:a利用多元线性回归方程,校正性别、吸烟、饮酒、年龄、文化程度等协变量后得出暴露组与对照组比较的P值。 表 4 外周血中蛋白因子浓度差异分析
Table 4. Analysis of difference in protein factor concentration in peripheral blood
测试项目 暴露组 对照组 P值 标准化系数β 校正P值a N 浓度(x±s, pg/mL) N 浓度(x±s, pg/mL) Aβ1-42 51 401.6±87.5 26 351.0±90.2 0.020 -0.288 0.018 注:a利用多元线性回归方程,校正性别、吸烟、饮酒、年龄、文化程度后得出暴露组与对照组比较的P值。 表 5 外周血中Aβ1-42蛋白浓度与数字跨度相关性分析
Table 5. Correlation analysis of Aβ1-42 protein concentration and digit span
项目 N 结果(x±s) r值 P值 暴露组 对照组 N 结果(x±s) r值 P值 N 结果(x±s) r值 P值 Aβ1-42(pg/mL) 77 384.5±6.1 51 401.6±87.5 26 351.0±90.2 数字跨度(分) 77 59.0±0.1 -0.173 0.133 51 58.6±1.8 -1.050 0.463 26 59.8±2.0 -0.058 0.779 -
[1] 刘兴发, 唐雨萌, 海景雯, 等. SD大鼠心血管系统的工频磁场暴露实验研究[J]. 高电压技术, 2018, 44(2): 599-609. DOI: 10.13336/j.1003-6520.hve.20180131034.Liu XF, Tang YM, Hai JW, et al. Experimental study on power-frequency magnetic field exposure of cardiovascular system in SD rats[J]. High Volt Eng, 2018, 44(2): 599-609. DOI: 10.13336/j.1003-6520.hve.20180131034. [2] 顾小雨. 工频电场对小鼠血液学指标及肝肾功能影响研究[D]. 杭州: 浙江大学, 2019.Gu XY. Study on the effect of power frequency electric field on hematological indexes and liver and kidney function in mice[D]. Hangzhou: Zhejiang University, 2019. [3] 王龙龙. 工频磁场对大鼠工作记忆神经电信号的影响[D]. 天津: 河北工业大学, 2017.Wang LL. Effects of power-frequency magnetic field on neural signals in working memory of rats[D]. Tianjin: Hebei University of Technology, 2017. [4] Akbarnejad Z, Esmaeilpour K, Shabani M, et al. Spatial memory recovery in Alzheimer's rat model by electromagnetic field exposure[J]. Int J Neurosci, 2018, 128(8): 691-696. DOI: 10.1080/00207454.2017.1411353. [5] Karimi SA, Salehi I, Shykhi T, et al. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats[J]. Behav Brain Res, 2019, 359(1): 630-638. DOI: 10.1016/j.bbr.2018.10.002. [6] Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics[J]. Acta Neuropathologica, 2020, 140(4): 417-447. DOI: 10.1007/s00401-020-02196-w. [7] Ciudad S, Puig E, Botzanowski T, et al. Aβ (1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage[J]. Nat Commun, 2020, 11(1): 3014. DOI: 10.1038/s41467-020-16566-1. [8] Jalilian H, Teshnizi SH, Röösli M, et al. Occupational exposure to extremely low frequency magnetic fields and risk of Alzheimer disease: a systematic review and meta-analysis[J]. Neurotoxicology, 2018, 69: 242-252. DOI: 0.1016/j.neuro.2017.12.005. [9] 梁友信. 介绍WHO推荐的神经行为核心测验组合[J]. 工业卫生与职业病, 1987, 13(6): 331-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ198706004.htmLiang YX. Introducing the core test combination of neurobehavior recommended by WHO[J]. Industrial Hygiene and Occupational Dis, 1987, 13(6): 331-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ198706004.htm [10] Karimi SA, Salehi I, Shykhi T, et al. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats[J]. Behav Brain Res, 2019, 359(1): 630-638. DOI: 10.1016/j.bbr.2018.10.002. [11] Keetley V, Wood A, Sadafi H, et al. Neuropsychological sequelae of 50 Hz magnetic fields[J]. Int J Radiat Biol, 2001, 77(6): 735-742. DOI: 10.1080/095530000110038716. [12] 边洪英, 郝建梅, 陈永青, 等. 极低频电磁场致职业暴露人群神经行为损伤的研究[J]. 疾病监测, 2019, 34(4): 365-370. DOI: 10.3784/j.issn.1003-9961.2019.04.018.Bian HY, Hao JM, Chen YQ, et al. Neurobehavioral injury induced by extremely low frequency electromagnetic field in occupational exposure population[J]. Dis surveill, 2019, 34(4): 365-370. DOI: 10.3784/j.issn.1003-9961.2019.04.018. [13] 秦景香, 刘武忠, 周敏, 等. 工频电场作业人员神经行为功能和健康状况的研究[J]. 环境与职业医学, 2010, 27(10): 590-593. https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX201010005.htmQin JX, Liu WZ, Zhou M, et al. Study on the neurobehavioral function and health status of workers in power frequency electric field[J]. J Environ Occup, 2010, 27(10): 590-593. https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX201010005.htm [14] Lim YY, Kalinouski P, Pietrzak RH, et al. Association of β-Amyloid and apolipoprotein Eε4 with memory decline in preclinical alzheimer disease[J]. JAMA Neurol, 2018, 75(4): 488-494. DOI: 10.1001/jamaneurol.2017.4325. [15] Kwakowsky A, Waldvogel HJ, Faull RLM. The effects of amyloid-beta on hippocampal glutamatergic receptor and transporter expression[J]. Neural Regen Res, 2021, 16(7): 1399-1401. DOI: 10.4103/1673-5374.301009. [16] Xiao YL, Ma BY, McElheny D, et al. Aβ (1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease[J]. Nat Struct Mol Biol, 2015, 22(6): 499-505. DOI: 10.1038/nsmb.2991. [17] Maes A, Anthonissen R, Wambacq S, et al. The cytome assay as a tool to investigate the possible association between exposure to extremely low frequency magnetic fields and an increased risk for alzheimer's disease[J]. J Alzheimers Dis, 2016, 50(3): 741-749. DOI: 10.3233/JAD-150669. [18] 王威, 崔德华, 童亚伟, 等. 阿尔茨海默病症状出现前阶段研究的战略意义[J]. 神经疾病与精神卫生, 2012, 12(2): 109-113. DOI: 10.3969/j.issn.1009-6574.2012.02.001.Wang W, Cui DH, Tong YW, et al. The strategic significance of pre-symptom research in Alzheimer's disease[J]. Nerv Dis Ment Heal, 2012, 12(2): 109-113. DOI: 10.3969/j.issn.1009-6574.2012.02.001. [19] Sorahan T, Kheifets L. Mortality from Alzheimer's, motorneuron and Parkinson's disease in relation to magnetic field exposure: findings from the study of UK electricity generation and transmission workers, 1973-2004[J]. Occup Environ Med, 2007, 64(12): 820-826. DOI: 10.1136/oem.2006.031559. [20] Håkansson N, Gustavsson P, Johansen C, et al. Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields[J]. Epidemiology, 2003, 14(4): 420-426. DOI: 10.1097/01.EDE.0000078446.76859.c9. [21] Qiu C, Fratiglioni L, Karp A, et al. Occupational exposure to electromagnetic fields and risk of Alzheimer's disease[J]. Epidemiology, 2004, 15(6): 687-694. DOI: 10.1097/01.ede.0000142147.49297.9d [22] Torrisi SA, Geraci F, Tropea MR, et al. Fluoxetine and vortioxetine reverse depressive-like phenotype and memory deficits induced by Aβ1-42 oligomers in mice: a key role of transforming growth factor-β1[J]. Front Pharmacol, 2019, 10: 693. DOI: 10.3389/fphar.2019.00693.