• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

COVID-19疫情下肺结核病人的COVID-19疫苗接种策略

王远舟 贾斯月 朱凤才 李靖欣

王远舟, 贾斯月, 朱凤才, 李靖欣. COVID-19疫情下肺结核病人的COVID-19疫苗接种策略[J]. 中华疾病控制杂志, 2022, 26(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2022.11.018
引用本文: 王远舟, 贾斯月, 朱凤才, 李靖欣. COVID-19疫情下肺结核病人的COVID-19疫苗接种策略[J]. 中华疾病控制杂志, 2022, 26(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2022.11.018
WANG Yuan-zhou, JIA Si-yue, ZHU Feng-cai, LI Jing-xin. Strategy for COVID-19 vaccination for patients with tuberculosis during the COVID-19 pandemic[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2022.11.018
Citation: WANG Yuan-zhou, JIA Si-yue, ZHU Feng-cai, LI Jing-xin. Strategy for COVID-19 vaccination for patients with tuberculosis during the COVID-19 pandemic[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2022.11.018

COVID-19疫情下肺结核病人的COVID-19疫苗接种策略

doi: 10.16462/j.cnki.zhjbkz.2022.11.018
基金项目: 

国家自然科学基金 82173584

详细信息
    通讯作者:

    李靖欣, E-mail: jingxin42102209@126.com

  • 中图分类号: R18

Strategy for COVID-19 vaccination for patients with tuberculosis during the COVID-19 pandemic

Funds: 

National Natural Science Foundation of China 82173584

More Information
  • 摘要: COVID-19疫情流行形势依旧严峻,对于疫苗的普及接种刻不容缓。肺结核是中国高发的慢性传染病,由于病发肺部,肺结核患者合并感染COVID-19之后病情更重,治疗效果差。而目前对于肺结核患者接种COVID-19疫苗的保护效力、免疫原性及安全性仍知之甚少,也缺乏相应的循证医学证据。本文回顾了肺结核的发病机制与流行病学,探讨了肺结核患者体内的免疫状态,对目前国内外已有的对肺结核患者疫苗接种的提议进行了总结,同时结合其他特殊人群已有的疫苗接种的临床研究进行分析,探讨了COVID-19疫情下肺结核病人的疫苗接种策略和开展以肺结核患者为目标人群的COVID-19疫苗临床研究的必要性。
  • [1] Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges[J]. Nat Rev Immunol, 2021, 21(4): 195-197. DOI: 10.1038/s41577-021-00526-x.
    [2] WHO. WHO Coronavirus (COVID-19) dashboard[EB/OL]. (2022-02-21)[2022-03-09]. https://covid19.who.int/.
    [3] Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 vaccines[J]. JAMA, 2021, 325(13): 1318-1320. DOI: 10.1001/jama.2021.3199.
    [4] Tanriover MD, Doganay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey[J]. Lancet, 2021, 398(10296): 213-222. DOI: 10.1016/S0140-6736(21)01429-X.
    [5] Jara A, Undurraga EA, González C, et al. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile[J]. N Engl J Med, 2021, 385(10): 875-884. DOI: 10.1056/NEJMoa2107715.
    [6] Fadlyana E, Rusmil K, Tarigan R, et al. A phase Ⅲ, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: An interim analysis in Indonesia[J]. Vaccine, 2021, 39(44): 6520-6528. DOI: 10.1016/j.vaccine.2021.09.052.
    [7] WHO. Global tuberculosis report 2021[EB/OL]. (2021-10-14) [2022-03-09]. https://www.who.int/publications/i/item/9789240037021.
    [8] Tadolini M, Codecasa LR, García-García JM, et al. Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases[J]. Eur Respir J, 2020, 56(1): 2001398. DOI: 10.1183/13993003.01398-2020.
    [9] Drain PK, Bajema KL, Dowdy D, et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection[J]. Clin Microbiol Rev, 2018, 31(4): e00021-e00018. DOI: 10.1128/CMR.00021-18.
    [10] Shah M, Dorman SE. Latent tuberculosis infection[J]. N Engl J Med, 2021, 385(24): 2271-2280. DOI: 10.1056/NEJMcp2108501.
    [11] Furin J, Cox H, Pai M. Tuberculosis[J]. Lancet, 2019, 393(10181): 1642-1656. DOI: 10.1016/S0140-6736(19)30308-3.
    [12] McQuaid CF, McCreesh N, Read JM, et al. The potential impact of COVID-19-related disruption on tuberculosis burden[J]. Eur Respir J, 2020, 56(2): 2001718. DOI: 10.1183/13993003.01718-2020.
    [13] Silva S, Arinaminpathy N, Atun R, et al. Economic impact of tuberculosis mortality in 120 countries and the cost of not achieving the Sustainable Development Goals tuberculosis targets: a full-income analysis[J]. Lancet Glob Health, 2021, 9(10): e1372-e1379. DOI: 10.1016/S2214-109X(21)00299-0.
    [14] Ravimohan S, Kornfeld H, Weissman D, et al. Tuberculosis and lung damage: from epidemiology to pathophysiology[J]. Eur Respir Rev, 2018, 27(147)170077. DOI: 10.1183/16000617.0077-2017.
    [15] Goossens SN, Sampson SL, Van Rie A. Mechanisms of drug-Induced tolerance in Mycobacterium tuberculosis[J]. Clin Microbiol Rev, 2020, 34(1): e00141-e00161. DOI: 10.1128/CMR.00141-20.
    [16] Xu W, Snell LM, Guo M, et al. Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection[J]. Immunity, 2021, 54(3): 526-541. DOI: 10.1016/j.immuni.2021.01.003.
    [17] McCaffrey EF, Donato M, Keren L, et al. The immunoregulatory landscape of human tuberculosis granulomas[J]. Nat Immunol, 2022, 23(2): 318-329. DOI: 10.1038/s41590-021-01121-x.
    [18] Sharan R, Bucşan AN, Ganatra S, et al. Chronic immune activation in TB/HIV co-infection: (trends in microbiology 28, 619-632; 2020)[J]. Trends Microbiol, 2020, 28(8): 699. DOI: 10.1016/j.tim.2020.05.006.
    [19] Seto S, Tsujimura K, Koide Y. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages[J]. Cell Microbiol, 2012, 14(5): 710-727. DOI: 10.1111/j.1462-5822.2012.01754.x.
    [20] Wang L, Wu J, Li J, et al. Host-mediated ubiquitination of a mycobacterial protein suppresses immunity[J]. Nature, 2020, 577(7792): 682-688. DOI: 10.1038/s41586-019-1915-7.
    [21] Khan N, Downey J, Sanz J, et al. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity[J]. Cell, 2020, 183(3): 752-770. DOI: 10.1016/j.cell.2020.09.062.
    [22] Roy Chowdhury R, Vallania F, Yang QT, et al. A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes[J]. Nature, 2018, 560(7720): 644-648. DOI: 10.1038/s41586-018-0439-x.
    [23] Joosten SA, van Meijgaarden KE, del Nonno F, et al. Patients with tuberculosis have a dysfunctional circulating b-cell compartment, which normalizes following successful treatment[J]. PLoS Pathog, 2016, 12(6): e1005687. DOI: 10.1371/journal.ppat.1005687.
    [24] CDC. Interim clinical considerations for use of COVID-19 vaccines currently approved or authorized in the United States[EB/OL]. (2022-03-07)[2022-03-29]. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html#special-populations.
    [25] 国家卫生健康委员会疾病预防控制局. 新冠病毒疫苗接种技术指南(第一版)[J]. 中国病毒病杂志, 2021, 11(3): 161-162. DOI: 10.16505/j.2095-0136.2021.0018.

    Bureau of Disease Control and Prevention, National Health Commission of the People's Republic of China. Guidelines of vaccination for COVID-19 vaccines in China (First edition)[J]. Chin J Viral Dis, 2021, 11(3): 161-162. DOI: 10.16505/j.2095-0136.2021.0018.
    [26] 曹玮. 慢性肝病、结核病和风湿免疫病患者接种新冠疫苗的专家建议[J]. 中华医学信息导报, 2021, 36(15): 6. DOI: 10.3760/cma.j.issn.1000-8039.2021.15.107.

    Cao W. Expert recommendation on severe acute respiratory syndrome coronavirus 2 vaccination in patients with chronic liver diseases, tuberculosis or rheumatoid diseases[J]. Chin Med News, 2021, 36(15): 6. DOI: 10.3760/cma.j.issn.1000-8039.2021.15.107.
    [27] 殷荣, 钮蕴超, 缪晓辉. 《特殊人群(慢性肝病、结核病和风湿免疫病患者)新型冠状病毒疫苗接种专家建议》解读[J]. 中华传染病杂志, 2021, 39(10): 588-590. DOI: 10.3760/cma.j.cn311365-20210623-00222.

    Yin R, Niu YC, Miu XH. Interpretation of "Expert recommendation on severe acute respiratory syndrome coronavirus 2 vaccination in patients with chronic liver diseases, tuberculosis or rheumatoid diseases"[J]. Chin J Infect Dis, 2021, 39(10): 588-590. DOI: 10.3760/cma.j.cn311365-20210623-00222.
    [28] 卢水华, 夏露. 结核病患者接种新型冠状病毒疫苗的专家建议[J]. 中国防痨杂志, 2021, 43(12): 1239-1242. DOI: 10.3969/j.issn.1000-6621.2021.12.003.

    Lu SH, Xia L. Expert advice on anti-novel coronavirus vaccination for tuberculosis patients[J]. Chin J Antituberc, 2021, 43(12): 1239-1242. DOI: 10.3969/j.issn.1000-6621.2021.12.003.
    [29] Akiyama S, Hamdeh S, Micic D, et al. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis[J]. Ann Rheum Dis, 2021, 80(3): 384-391. DOI: 10.1136/annrheumdis-2020-218946.
    [30] Medeiros-Ribeiro AC, Aikawa NE, Saad CGS, et al. Immunogenicity and safety of the CoronaVac inactivated vaccine in patients with autoimmune rheumatic diseases: a phase 4 trial[J]. Nat Med, 2021, 27(10): 1744-1751. DOI: 10.1038/s41591-021-01469-5.
    [31] Furer V, Eviatar T, Zisman D, et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study[J]. Ann Rheum Dis, 2021, 80(10): 1330-1338. DOI: 10.1136/annrheumdis-2021-220647.
    [32] Geisen UM, Berner DK, Tran F, et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort[J]. Ann Rheum Dis, 2021, 80(10): 1306-1311. DOI: 10.1136/annrheumdis-2021-220272.
    [33] Frater J, Ewer KJ, Ogbe A, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial[J]. Lancet HIV, 2021, 8(8): e474-e485. DOI: 10.1016/S2352-3018(21)00103-X.
    [34] Madhi SA, Koen AL, Izu A, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial[J]. Lancet HIV, 2021, 8(9): e568-e580. DOI: 10.1016/S2352-3018(21)00157-0.
    [35] Shroff RT, Chalasani P, Wei R, et al. Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors[J]. Nat Med, 2021, 27(11): 2002-2011. DOI: 10.1038/s41591-021-01542-z.
    [36] Waldhorn I, Holland R, Goshen-Lago T, et al. Six-month efficacy and toxicity profile of BNT162b2 vaccine in cancer patients with solid tumors[J]. Cancer Discov, 2021, 11(10): 2430-2435. DOI: 10.1158/2159-8290.CD-21-1072.
    [37] Oosting SF, van der Veldt AAM, GeurtsvanKessel CH, et al. mRNA-1273 COVID-19 vaccination in patients receiving chemotherapy, immunotherapy, or chemoimmunotherapy for solid tumours: a prospective, multicentre, non-inferiority trial[J]. Lancet Oncol, 2021, 22(12): 1681-1691. DOI: 10.1016/S1470-2045(21)00574-X.
    [38] Lee A, Wong SY, Chai LYA, et al. Efficacy of covid-19 vaccines in immunocompromised patients: systematic review and meta-analysis[J]. BMJ, 2022, 376: e068632. DOI: 10.1136/bmj-2021-068632.
  • 加载中
计量
  • 文章访问数:  324
  • HTML全文浏览量:  193
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-07-03
  • 网络出版日期:  2022-12-21
  • 刊出日期:  2022-11-10

目录

    /

    返回文章
    返回