-
摘要:
目的 N6-甲基腺嘌呤(N6-methyladenosine,m6A)修饰通过调节mRNA表达及功能参与免疫炎症过程逐渐被报道,但在系统性红斑狼疮(systemic lupus erythematosus,SLE)中研究有限。故本研究将初步探索m6A修饰相关mRNA表达与SLE的关联及影响。 方法 利用实时定量聚合酶链反应和蛋白质印迹实验验证m6A修饰相关干扰素诱导蛋白5(interferon induced protein with tetratricopeptide repeats 5,IFIT5)在SLE患者T淋巴细胞(T细胞)中表达情况;进一步分析IFIT5差异表达与患者临床表现和临床用药之间的关系。构建干扰和过表达IFIT5的Jurkat细胞系,流式细胞术分析T细胞表型及相关细胞因子表达情况。 结果 与正常对照相比,SLE中高表达的IFIT5上m6A修饰显著增强;患者T细胞中IFIT5基因表达和蛋白水平均上调(均P<0.05),且与SLE患者疾病活动程度有关(rs=0.388, P=0.028)。Jurkat细胞实验发现,敲低IFIT5显著抑制细胞增殖和加速细胞凋亡,并触发肿瘤坏死因子-α(tumor necrosis factor-alpha, TNF-α)分泌且降低白介素-2(interleukin-2, IL-2)和白介素-6(interleukin-6, IL-6)的表达。 结论 SLE疾病中IFIT5高表达与m6A修饰相关;m6A修饰相关的IFIT5在SLE患者T细胞中高表达,且参与T细胞增殖和凋亡及炎症因子表达。故m6A修饰相关IFIT5可能参与SLE患者T细胞免疫炎症反应,但确切机制值得进一步研究。 Abstract:Objective N6-methyladenosine (m6A) methylation involved in immuno-inflammatory responses via the regulation of mRNA expression and function is reported, but its limit is in systemic lupus erythematosus (SLE). Therefore, this study will initially explore the associations of m6A-related mRNA expression with SLE. Methods Real-time quantitative polymerase chain reaction and western blot were used to validate the expression levels of m6A-related IFIT5in T cells of patients with SLE. Following that, the correlations between IFIT5and clinical characteristics, laboratory parameters and treatment of patients with SLE were analyzed. Further functional experiments were conducted to establish the Jurkat cell lines with silencing IFIT5 for exploration of the alteration of T cells and immune inflammatory cytokines (TNF-α, IL-2, and IL-6). Results Compared with normal controls, m6A modification of highly expressed IFIT5 in SLE patients was significantly enhanced. The expression levels of IFIT5 were steadily up-regulated in the T cells of patients with SLE, and were closely associated with the degree of disease activity in patients with SLE. Cell experiments showed that silencing IFIT5 significantly inhibited T cell proliferation and accelerated apoptosis, as well as triggered tumor necrosis factor-alpha (TNF-α) secretion and induced the expression levels of interleukin-2 (IL-2) and interleukin-6 (IL-6). Conclusion The high expression level of IFIT5is related to m6A modification, it is also up-regulated in the T cells of patients with SLE, which participate in the immune inflammatory responses of Jurkat cells, and the specific mechanism deserves further study. -
图 1 m6A修饰相关的IFIT5在SLE患者与正常对照T细胞中的表达比较
A:SLE患者和正常对照中IFIT5的m6A修饰峰;B:IFIT5基因表达;C:IFIT5蛋白表达。
Figure 1. The Expression levels of m6A related-IFIT5in T cells of SLE patients and controls
A: the m6A peaks of IFIT5between patients with SLE and normal controls; B: the gene expression of IFIT5; C: the protein expression of IFIT5.
图 2 沉默IFIT5对T细胞凋亡、增殖及其细胞因子表达的影响
A~B, 沉默IFTI5后促进Jurkat细胞凋亡;A,阴性对照组;B,IFIT5基因沉默组;Q1,坏死细胞;Q2,晚期凋亡细胞;Q3,早期凋亡细胞; Q4,正常细胞。C~D,沉默IFIT5抑制Jurkat细胞增殖;C,阴性对照组;D,IFIT5基因沉默组;E,TNF-α、IL-2和IL-6表达情况。
Figure 2. The influence of silencing IFIT5 on T cells apoptosis, proliferation, and cytokine secretion
A-B, the silencing IFIT5promoted apoptosis in Jurkat cells; A, negative controls; B, the silencing IFIT5; Q1, necrotic cells; Q2, late apoptotic cells; Q3, early apoptotic cells; Q4, normal cells. C-D, the silencing IFIT5inhibited proliferation in Jurkat cells; C, negative controls; D, the silencing IFIT5; E, the expression level of TNF-α was increased while the expression levels of IL-2 and IL-6 were decreased in the silencing IFIT5Jurkat cells when compared with the controls.
-
[1] Basta F, Fasola F, Triantafyllias K, et al. Systemic lupus erythematosus (SLE) therapy: the old and the new[J]. Rheumatol Ther, 2020, 7(3): 433-446. DOI: 10.1007/s40744-020-00212-9. [2] Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus[J]. Nat Genet, 2015, 47(12): 1457-1464. DOI: 10.1038/ng.3434. [3] Wu H, Chang C, Lu Q. The epigenetics of lupus erythematosus[J]. Adv Exp Med Biol, 2020, 1253: 185-207. DOI: 10.1007/978-981-15-3449-2_7. [4] Liu C, Yang Z, Li R, et al. Potential roles of N6-methyladenosine (m6A) in immune cells[J]. J Transl Med, 2021, 19(1): 251. DOI: 10.1186/s12967-021-02918-y. [5] Wang HM, Hu X, Huang MY, et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation[J]. Nat Commun, 2019, 10: 1898. DOI: 10.1038/s41467-019-09903-6. [6] Chen Q, Li H, Liu YS, et al. Epigenetic regulation of immune and inflammatory responses in rheumatoid arthritis[J]. Front Immunol, 2022, 13: 881191. DOI: 10.3389/fimmu.2022.881191. [7] Luo Q, Rao JY, Zhang L, et al. The study of METTL14, ALKBH5, and YTHDF2 in peripheral blood mononuclear cells from systemic lupus erythematosus[J]. Mol Genet Genomic Med, 2020, 8(9): e1298. DOI: 10.1002/mgg3.1298. [8] Luo Q, Fu BQ, Zhang L, et al. Decreased peripheral blood ALKBH5 correlates with markers of autoimmune response in systemic lupus erythematosus[J]. Dis Markers, 2020, 2020: 8193895. DOI: 10.1155/2020/8193895. [9] Wu J, Deng LJ, Xia YR, et al. Involvement of N6-methyladenosine modifications of long noncoding RNAs in systemic lupus erythematosus[J]. Mol Immunol, 2022, 143: 77-84. DOI: 10.1016/j.molimm.2022.01.006. [10] Wu YY, Xing J, Li XF, et al. Roles of interferon induced protein with tetratricopeptide repeats (IFIT) family in autoimmune disease[J]. Autoimmun Rev, 2023, 22(11): 103453. DOI: 10.1016/j.autrev.2023.103453. [11] Hochberg MC. Updating the american college of rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis and rheumatism, 1997, 40(9): 1725. [12] Li LJ, Fan YG, Leng RX, et al. Potential link between m6A modification and systemic lupus erythematosus[J]. Mol Immunol, 2018, 93: 55-63. DOI: 10.1016/j.molimm.2017.11.009. [13] Zhang BH, Liu XY, Chen W, et al. IFIT5 potentiates anti-viral response through enhancing innate immune signaling pathways[J]. Acta Biochim Biophys Sin (Shanghai), 2013, 45(10): 867-874. DOI: 10.1093/abbs/gmt088. [14] Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000[J]. The Journal of rheumatology, 2002, 29(2): 288-291. [15] Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology[J]. Nat Rev Rheumatol, 2020, 16(3): 155-166. DOI: 10.1038/s41584-020-0372-x. [16] Su R, Dong L, Li YC, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion[J]. Cancer Cell, 2020, 38(1): 79-96. e11. DOI: 10.1016/j.ccell.2020.04.017. [17] Li HB, Tong JY, Zhu S, et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342. DOI: 10.1038/nature23450. [18] Yao YP, Yang Y, Guo WH, et al. METTL3-dependent m6A modification programs T follicular helper cell differentiation[J]. Nat Commun, 2021, 12(1): 1333. DOI: 10.1038/s41467-021-21594-6. [19] Hao H, Nakayamada S, Yamagata K, et al. Conversion of T follicular helper cells to T follicular regulatory cells by interleukin-2 through transcriptional regulation in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2021, 73(1): 132-142. DOI: 10.1002/art.41457.