• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miRNA作为尘肺病潜在生物标志物的研究与进展

杜苗苗 王佳 李雯雯 穆敏 朱峰林 叶冬青

杜苗苗, 王佳, 李雯雯, 穆敏, 朱峰林, 叶冬青. miRNA作为尘肺病潜在生物标志物的研究与进展[J]. 中华疾病控制杂志, 2023, 27(12): 1480-1485. doi: 10.16462/j.cnki.zhjbkz.2023.12.019
引用本文: 杜苗苗, 王佳, 李雯雯, 穆敏, 朱峰林, 叶冬青. miRNA作为尘肺病潜在生物标志物的研究与进展[J]. 中华疾病控制杂志, 2023, 27(12): 1480-1485. doi: 10.16462/j.cnki.zhjbkz.2023.12.019
DU Miaomiao, WANG Jia, LI Wenwen, MU Min, ZHU Fenglin, YE Dongqing. Research and progress of miRNA as potential biomarkers for pneumoconiosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(12): 1480-1485. doi: 10.16462/j.cnki.zhjbkz.2023.12.019
Citation: DU Miaomiao, WANG Jia, LI Wenwen, MU Min, ZHU Fenglin, YE Dongqing. Research and progress of miRNA as potential biomarkers for pneumoconiosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(12): 1480-1485. doi: 10.16462/j.cnki.zhjbkz.2023.12.019

miRNA作为尘肺病潜在生物标志物的研究与进展

doi: 10.16462/j.cnki.zhjbkz.2023.12.019
基金项目: 

工业粉尘防控与职业安全健康教育部重点实验室开放基金 EK20202002

煤炭安全精准开采国家地方联合工程研究中心开放基金 EC2021007

安徽理工大学引进人才基金 13200389

详细信息
    通讯作者:

    叶冬青,E-mail: ydqph@aust.edu.cn

    王佳,E-mail: wangjia@whu.edu.cn

  • 中图分类号: R135.2

Research and progress of miRNA as potential biomarkers for pneumoconiosis

Funds: 

Independent Research Fund of Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education EK20202002

The Open Research Grant of the Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining EC2021007

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology 13200389

More Information
  • 摘要: 尘肺病是目前我国临床上最常见的职业病之一,其发病机制尚未完全明确,临床上缺乏有效地治疗方法。微小RNA(microRNAs, miRNA)是一类非编码单链的RNA分子,通过与靶基因结合,抑制mRNA翻译或促进mRNA的降解,以此参与基因转录后翻译水平的调控。已有研究表明miRNA与尘肺病的发生发展密切相关,是尘肺病早期筛查诊断的重要候选生物标志物。本研究就miRNA在尘肺病中的研究现状和进展进行综述,为尘肺病的发病机制研究及早期预警、诊断、治疗提供新的思路及方法。
  • 图  1  尘肺病发病机制示意

    Figure  1.  Schematic diagram of pathogenic mechanism of pneumoconiosis

  • [1] Adamcakova J, Mokra D. New insights into pathomechanisms and treatment possibilities for lung silicosis[J]. Int J Mol Sci, 2021, 22(8): 4162. DOI: 10.3390/ijms22084162.
    [2] Bo C, Zhang J, Sai L, et al. Integrative transcriptomic and proteomic analysis reveals mechanisms of silica-induced pulmonary fibrosis in rats[J]. BMC Pulm Med, 2022, 22(1): 1-12. DOI: 10.1186/s12890-021-01807-w.
    [3] Qin X, Lin X, Liu L, et al. Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner[J]. J Cell Mol Med, 2021, 25(9): 4466-4477. DOI: 10.1111/jcmm.16524.
    [4] 张林. SiO2诱导的巨噬细胞外泌体miRNAs在肺成纤维细胞转分化中的作用[D]. 郑州: 郑州大学, 2018.

    Zhang L. Role of SiO2-induced macrophage exosome miRNAs in lung fibroblast transdifferentiation[D]. Zhengzhou: Zhengzhou University, 2018.
    [5] Jp NA, Imanaka M, Suganuma N. Japanese workplace health management in pneumoconiosis prevention[J]. J Occup Health, 2017, 59(2): 91-103. DOI: 10.1539/joh.16-0031-RA.
    [6] Hall NB, Blackley DJ, Halldin CN, et al. Current review of pneumoconiosis among US coal miners[J]. Curr Environ Health Rep, 2019, 6: 137-147. DOI: 10.1007/s40572-019-00246-4.
    [7] Cho SJ, Lee M, Stout-Delgado HW, et al. DROSHA-dependent miRNA and AIM2 inflammasome activation in idiopathic pulmonary fibrosis[J]. Int J Mol Sci, 2020, 21(5): 1668. DOI: 10.3390/ijms21051668.
    [8] Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease[J]. Vet Pathol, 2014, 51(4): 759-774. DOI: 10.1177/0300985813502820.
    [9] Zeng M, Zhu L, Li L, et al. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1[J]. Cell Mol Biol Lett, 2017, 22: 1-13. DOI: 10.1186/s11658-017-0041-5.
    [10] Wang M, Ye Y, Qian H, et al. Common genetic variants in pre-microRNAs are associated with risk of coal workers' pneumoconiosis[J]. J Hum Genet, 2009, 55(1): 13-17. DOI: 10.1038/jhg.2009.112.
    [11] Cui J, Guan Q, Lv H, et al. Three-dimensional nanorod array for label-free surface-enhanced Raman spectroscopy analysis of microRNA pneumoconiosis biomarkers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261: 120015. DOI: 10.1016/j.saa.2021.120015.
    [12] Zhang Y, Wang F, Zhou D, et al. Genome-wide analysis of aberrantly expressed microRNAs in bronchoalveolar lavage fluid from patients with silicosis[J]. Ind Health, 2016, 54(4): 361-369. DOI: 10.2486/indhealth.2015-0170.
    [13] Tian Y, Cui X, Guan X, et al. Differential expression profile of microRNAs in the lung tissues of coal workers with pneumoconiosis and patients with silicosis[J]. Toxicol Ind Health, 2023, 39(4): 204-217. DOI: 10.1177/07482337231156281.
    [14] Zhang J, Hu W, Liu K, et al. Integrated mRNA and microRNA profiling in lung tissue and blood from human silicosis[J]. J Gene Med, 2023, 25(8): e3518. DOI: 10.1002/jgm.3518.
    [15] Huang RX, Yu T, Li Y, et al. Upregulated has-miR-4516 as a potential biomarker for early diagnosis of dust-induced pulmonary fibrosis in patients with pneumoconiosis[J]. Toxicol Res, 2018(3): 3. DOI: 10.1039/C8TX00031J.
    [16] Guo Li, Ji XM, Yang S, et al. Genome-wide analysis of aberrantly expressed circulating miRNAs in patients with coal workers' pneumoconiosis[J]. Mol Biol Rep, 2013, 40(5): 3739-3747. DOI: 10.1007/s11033-012-2450-x.
    [17] Dimitrijevi M, Stanojevi S, Vuji V, et al. Aging oppositely affects TNF-α and IL-10 production by macrophages from different rat strains[J]. Biogerontology, 2014, 15(5): 475-486. DOI: 10.1007/s10522-014-9513-4.
    [18] 李娟, 郑晋南, 刘云兴, 等. 矽肺病人BALF液mi R-146a及IL-1β的表达特征研究[J]. 现代预防医学, 2020, 47(10): 1852-1855, 1920.

    Li J, Zheng JN, Liu YX, et al. Expression characteristics of BALF solution mi R-146a and IL-1β in patients with silicosis[J]. Modern Prev Med, 2020, 47(10): 1852-1855, 1920.
    [19] Fan J, Ji X, Wang S, et al. Regulatory effect of miR-149 on interleukin-6 expression in silica-induced pulmonary fibrosis[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2014, 32(3): 161-167
    [20] Tan S, Chen S. The Mechanism and Effect of Autophagy, Apoptosis, and Pyroptosis on the Progression of Silicosis[J]. Int J Mol Sci, 2021;22(15): 8110. DOI: 10.3390/IJMS22158110.
    [21] 赵阿会. 矽肺相关肺上皮细胞间质转分化中miR-34a-5p的作用[D]. 郑州: 郑州大学, 2020.

    Zhao AH. Role of miR-34a-5p in silicosis-associated pulmonary epithelial cell interstitial transdifferentiation[D]. Zhengzhou: Zhengzhou University, 2020.
    [22] Jy A, Ping L A, Hp A, et al. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1[J]. Ecotoxicol Environ Saf, 2021, 220: 112372. DOI: 10.1016/j.ecoenv.2021.112372.
    [23] Gao X, Xu D, Li S, et al. Pulmonary Silicosis Alters MicroRNA Expression in Rat Lung and miR-411-3p Exerts Anti-fibrotic Effects by Inhibiting MRTF-A/SRF Signaling[J]. Mol Ther Nucleic Acids, 2020, 20: 851-865. DOI: 10.1016/j.omtn.2020.05.005.
    [24] Xu Q, Liu Y, Pan H, et al. Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis[J]. Toxicology, 2019, 414: 57-67. DOI: 10.1016/j.tox.2019.01.007
    [25] Yucesoy B, Vallyathan V, Landsittel DP, et al. Cytokine polymorphisms in silicosis and other pneumoconioses[J]. Mol Cell Biochem, 2002, 234(1): 219-224. DOI: 10.1023/A:1015987007360.
    [26] Zhang Y, Wang F, Lan Y, et al. Roles of microRNA-146a and microRNA-181b in regulating the secretion of tumor necrosis factor-α and interleukin-1β in silicon dioxide-induced NR8383 rat macrophages[J]. Mol Med Rep, 2015, 12(4): 5587-5593. DOI: 10.3892/mmr.2015.4083.
    [27] Ding M, Pei Y, Zhang C, et al. Exosomal miR-125a-5p regulates T lymphocyte subsets to promote silica-induced pulmonary fibrosis by targeting TRAF6[J]. Ecotoxicol Environ Saf, 2023, 249: 114401. DOI: 10.1016/j.ecoenv.2022.114401.
    [28] Chen Y, Xu D, Yao J, et al. Inhibition of miR-155-5p exerts anti-fibrotic effects in silicotic mice by regulating meprin α[J]. Mol Ther Nucleic Acids, 2019, 19: 350-360. DOI: 10.1016/j.omtn.2019.11.018.
    [29] Yuan J, Li P, Pan H, et al. miR-542-5p attenuates fibroblast activation by targeting integrin α6 in silica-induced pulmonary fibrosis[J]. Int J Mol Sci, 2018, 19(12): 3717. DOI: 10.3390/ijms19123717.
    [30] Qian Q, Ma Q, Wang B, et al. MicroRNA-205-5p targets E2F1 to promote autophagy and inhibit pulmonary fibrosis in silicosis through impairing SKP2-mediated Beclin1 ubiquitination[J]. J Cell Mol Med, 2021, 25(19): 9214-9227. DOI: 10.1111/jcmm.16825.
    [31] Zhang L, Li J, Hao C, et al. Correction: Up-regulation of exosomal miR-125a in pneumoconiosis inhibits lung cancer development by suppressing expressions of EZH2 and hnRNPK[J]. RSC Adv, 2018, 8(61): 34838. DOI: 10.1039/c8ra03081b.
    [32] Xu T, Yan W, Wu Q, et al. MiR-326 inhibits inflammation and promotes autophagy in silica-induced pulmonary fibrosis through targeting TNFSF14 and PTBP1[J]. Chem Res Toxicol, 2019, 32(11): 2192-2203. DOI: 10.1021/acs.chemrestox.9b00194.
    [33] Wang X, Xu K, Yang X, et al. Upregulated miR-29c suppresses silica-induced lung fibrosis through the Wnt/β-catenin pathway in mice[J]. Hum Exp Toxicol, 2018, 37(9): 944-952. DOI: 10.1177/0960327117741750.
    [34] Wang X. Experimental study of miRNA200a regulating Wnt/β-catenin signaling pathway in silica-induced mouse lung epithelial cells[J]. China Medical Abstracts(Internal Medicine), 2018, 35(2): 14-14.
    [35] 邓丽明, 周桂芳, 梁博萱, 等. miR-489调控PI3K/Akt信号通路促进矽肺诱导小鼠肺纤维化的作用[J]. 海南医学, 2021, 32(23): 2993-2997. DOI: 10.3969/j.issn.1003-6350.2021.23.001.

    Teng LM, Zhou GF, Liang BX, et al. Role of miR-489 in regulating PI3K/Akt signaling pathway in promoting silicosis-induced pulmonary fibrosis in mice[J]. Hainan Med J, 2021, 32(23): 2993-2997. DOI: 10.3969/j.issn.1003-6350.2021.23.001.
    [36] Pang X, Shi H, Chen X, et al. miRNA-34c-5p targets Fra-1 to inhibit pulmonary fibrosis induced by silica through p53 and PTEN/PI3K/Akt signaling pathway[J]. Environ Toxicol, 2022, 37(8): 2019-2032. DOI: 10.1002/tox.23547.
    [37] Han R, Ji X, Rong R, et al. MiR-449a regulates autophagy to inhibit silica-induced pulmonary fibrosis through targeting Bcl2[J]. J Mol Med, 2016, 94(11): 1267-1279. DOI: 10.1007/s00109-016-1441-0.
  • 加载中
图(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  35
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-10-04
  • 刊出日期:  2023-12-10

目录

    /

    返回文章
    返回