• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白细胞介素与肺结核因果关联的孟德尔随机化研究

王兴斌 赵昌明 黄秋丽 王玲 张亚欣 杨得杰 王兆芬

王兴斌, 赵昌明, 黄秋丽, 王玲, 张亚欣, 杨得杰, 王兆芬. 白细胞介素与肺结核因果关联的孟德尔随机化研究[J]. 中华疾病控制杂志, 2024, 28(7): 827-832. doi: 10.16462/j.cnki.zhjbkz.2024.07.013
引用本文: 王兴斌, 赵昌明, 黄秋丽, 王玲, 张亚欣, 杨得杰, 王兆芬. 白细胞介素与肺结核因果关联的孟德尔随机化研究[J]. 中华疾病控制杂志, 2024, 28(7): 827-832. doi: 10.16462/j.cnki.zhjbkz.2024.07.013
WANG Xingbin, ZHAO Changming, HUANG Qiuli, WANG Ling, ZHANG Yaxin, YANG Dejie, WANG Zhaofen. Mendelian randomization study on the causal relationship between interleukins and pulmonary tuberculosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(7): 827-832. doi: 10.16462/j.cnki.zhjbkz.2024.07.013
Citation: WANG Xingbin, ZHAO Changming, HUANG Qiuli, WANG Ling, ZHANG Yaxin, YANG Dejie, WANG Zhaofen. Mendelian randomization study on the causal relationship between interleukins and pulmonary tuberculosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(7): 827-832. doi: 10.16462/j.cnki.zhjbkz.2024.07.013

白细胞介素与肺结核因果关联的孟德尔随机化研究

doi: 10.16462/j.cnki.zhjbkz.2024.07.013
基金项目: 

青海省自然科学基金 2020-ZJ-929

详细信息
    通讯作者:

    王兆芬, E-mail: kristy538@163.com

  • 中图分类号: R181.3

Mendelian randomization study on the causal relationship between interleukins and pulmonary tuberculosis

Funds: 

Natural Science Foundation of Qinghai Province 2020-ZJ-929

More Information
  • 摘要:   目的  采用两样本孟德尔随机化(Mendelian randomization, MR)方法研究多种白细胞介素(interleukin, IL)水平与患肺结核风险的因果关联。  方法  IL和肺结核的数据分别来自3项公开发表的欧洲人群全基因组关联研究(genome-wide association studies, GWAS)汇总数据。根据预设的阈值和连锁不平衡等要求从汇总数据中提取了与多种IL密切相关的单核苷酸多态性(single nucleotide polymorphism, SNP)位点作为工具变量,研究主要采用逆方差加权(inverse variance weighted, IVW)、MR-Egger回归和加权中位数估计法(weighted median estimator, WME)评估9种IL水平与肺结核风险之间的因果效应。同时,对结果进行了水平多效性和异质性的检验以保证其稳定性,采用方向性检验检查是否存在反向因果效应。  结果  IVW结果显示,尚未发现IL-1RA、IL-2RA、IL-6、IL-6RA、IL-8、IL-17、IL-I8与肺结核风险之间存在因果关联(均P>0.05)。IL-16水平的增加与肺结核风险增加有关(OR=1.210, 95% CI: 1.032~1.419, P=0.019, P校正=0.086),而IL-27水平的增加与肺结核风险降低有关(OR=0.875, 95% CI: 0.788~0.970, P=0.011, P校正=0.086),结果在3种MR方法中稳定并且方向一致,同时不存在反向因果关系。  结论  尚未发现IL-1RA、IL-2RA、IL-6、IL-6RA、IL-8、IL-17、IL-I8与肺结核之间存在因果关联。IL-16水平的增加与肺结核风险增加有关,而IL-27水平的增加与肺结核风险降低有关。
  • 图  1  白细胞介素与肺结核之间关系的孟德尔随机化结果

    IL-1RA,白细胞介素-1受体拮抗剂;IL-2RA,IL-2受体α亚基;IL-6RA,白细胞介素-6受体拮抗;SNP,单核苷酸多态性;PTB,肺结核。

    Figure  1.  Mendelian randomization results of the relationship between interleukin and tuberculosis

    IL-1RA, interleukin 1 receptor antagonist; IL-2RA, IL-2 receptor α subunit; IL-6RA, interleukin 6 receptor antagonist; SNP, single nucleotide polymorphism; PTB, pulmonary tuberculosis.

    图  2  IL-16、IL-27孟德尔随机化散点图

    SNP,单核苷酸多态性;PTB,肺结核。

    Figure  2.  Mendelian randomization scatter plot of IL-16 and IL-27

    SNP, single nucleotide polymorphism; PTB, pulmonary tuberculosis.

    图  3  留一法敏感性分析图

    MR: 孟德尔随机化;PTB: 肺结核;A表示IL-16对肺结核的MR留一法敏感性分析;B表示IL-27对肺结核的MR留一法敏感性分析。

    Figure  3.  Leave-one-out sensitivity analysis chart

    MR: Mendelian randomization; PTB: pulmonary tuberculosis; A shows MR leave-one-out sensitivity analysis for IL-16 PTB; B shows MR leave-one-out sensitivity analysis for IL-27 PTB.

    表  1  白细胞介素与肺结核GWAS汇总数据概要

    Table  1.   Summary of GWAS summary data on interleukins and tuberculosis

    变量
    Variable
    SNP数量
    Number of SNP
    来源
    Source
    样本量
    (病例/对照)
    Sample size
    (case/control)
    人种
    Race
    发表年份
    Publication year
    PMID
    IL-1RA 13 081 270 Folkersen et al GWAS 21 758 欧洲人 2020 33067605
    IL-6 11 782 139 Folkersen et al GWAS 21 758 欧洲人 2020 33067605
    IL-6RA 13 137 746 Folkersen et al GWAS 21 758 欧洲人 2020 33067605
    IL-8 12 717 989 Folkersen et al GWAS 21 758 欧洲人 2020 33067605
    IL-16 13 102 566 Folkersen et al GWAS 21 758 欧洲人 2020 33067605
    IL-I8 13 102 515 Folkersen et al GWAS 21 758 欧洲人 2020 33067605
    IL-27 13 102 608 Folkersen et al GWAS 21 758 欧洲人 2020 33067605
    IL-2RA 9 583 519 Ahola-Olli et al GWAS 3 677 欧洲人 2016 27989323
    IL-17 9 786 653 Ahola-Olli et al GWAS 7 760 欧洲人 2016 27989323
    肺结核Tuberculosis 20 170 225 https://r9.finngen.fi/ 36 715(1 793/374 922) 欧洲人 2022
    注:GWAS, 全基因组关联研究;PMID, Pubmed唯一标识码; SNP,单核苷酸多态性; IL, 白细胞介素。
    Note: GWAS, genome-wide association study; PMID, Pubmed unique identifier; SNP, single nucleotide polymorphism; IL, interleukin.
    下载: 导出CSV

    表  2  多效性和敏感性分析结果

    Table  2.   Pleiotropy and sensitivity analysis results

    暴露变量
    Exposure variable
    MR-egger检验
    MR-egger test
    Cochran′s Q检验
    Cochran′s Q test
    MR-PRESSO检验
    MR-PRESSO test
    截距
    Intercept
    P
    value
    Q
    value
    P
    value
    Global test P
    Global test P value
    偏误检验P
    Distortion test P value
    IL-16 -0.019 542 0.577 977 1.976 758 0.577 244 7 0.540 -
    IL-27 0.031 320 6 0.111 479 9.313 354 0.316 555 3 0.471 -
    注:“-”表示无法获取。
    Note: "-" indicates that it can′t be obtained.
    下载: 导出CSV

    表  3  反向因果效应检验结果

    Table  3.   Reverse causality effect test results

    暴露变量
    Exposure variable
    暴露r2
    Exposure r2
    结局r2
    Outcome r2
    Steiger P
    Steiger P value
    IL-16 0.065 686 13 1.99×10-5 < 0.000 1
    IL-27 0.094 499 87 4.45×10-5 < 0.000 1
    下载: 导出CSV
  • [1] Petersen E, Al-abri S, Chakaya J, et al. World TB Day 2022: revamping and reshaping global TB control programs by advancing lessons learnt from the COVID-19 pandemic[J]. Int J Infect Dis, 2022, 124: S1-S3. DOI: 10.1016/j.ijid.2022.02.057.
    [2] Kumar NP, Moideen K, Banurekha VV, et al. Plasma proinflammatory cytokines are markers of disease severity and bacterial burden in pulmonary tuberculosis[J]. Open Forum Infect Dis, 2019, 6(7): ofz257. DOI: 10.1093/ofid/ofz257.
    [3] Moideen K, Kumar NP, Bethunaickan R, et al. Heightened systemic levels of anti-inflammatory cytokines in pulmonary tuberculosis and alterations following anti-tuberculosis treatment[J]. Cytokine, 2020, 127: 154929. DOI: 10.1016/j.cyto.2019.154929.
    [4] 和思敏, 张雨, 彭刘庆, 等. 倾向性评分与孟德尔随机化国内研究现状[J]. 中华疾病控制杂志, 2022, 26(3): 325-330. DOI: 10.16462/j.cnki.zhjbkz.2022.03.014.

    He SM, Zhang Y, Peng LQ, et al. Research progress of propensity score and Mendelian randomization in China[J]. Chin J Dis Control Prev, 2022, 26(3): 325-330. DOI: 10.16462/j.cnki.zhjbkz.2022.03.014.
    [5] Folkersen L, Gustafsson S, Wang Q, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30 931 individuals[J]. Nat Metab, 2020, 2(10): 1135-1148. DOI: 10.1038/s42255-020-00287-2.
    [6] Ahola-olli AV, Würtz P, Havulinna AS, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors[J]. Am J Hum Genet, 2017, 100(1): 40-50. DOI: 10.1016/j.ajhg.2016.11.007.
    [7] 李文超, 李洪凯, 刘新辉, 等. 基于孟德尔随机化探索臀围与2型糖尿病的因果关系[J]. 中华疾病控制杂志, 2020, 24(1): 9-13, 19. DOI: 10.16462/j.cnki.zhjbkz.2020.01.003.

    Li WC, Li HK, Liu XH, et al. Exploring the causal relationship between hip circumference and type 2 diabetes based on mende lian randomization[J]. Chin J Dis Control Prev, 2020, 24(1): 9-13, 19. DOI: 10.16462/j.cnki.zhjbkz.2020.01.003.
    [8] Feng R, Lu M, Xu J, et al. Pulmonary embolism and 529 human blood metabolites: genetic correlation and two-sample Mendelian randomization study[J]. BMC Genomic Data, 2022, 23(1): 69. DOI: 10.1186/s12863-022-01082-6.
    [9] Burgess S, Butterworth A, Thompson S G. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665. DOI: 10.1002/gepi.21758.
    [10] Bowden J, Davey SG, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. DOI: 10.1093/ije/dyv080.
    [11] Bowden J, Davey SG, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. DOI: 10.1002/gepi.21965.
    [12] Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. DOI: 10.1007/s10654-017-0255-x.
    [13] Cohen JF, Chalumeau M, Cohen R, et al. Cochran's Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy[J]. J Clini Epidemiol, 2015, 68(3): 299-306. DOI: 10.1016/j.jclinepi.2014.09.005.
    [14] Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. DOI: 10.1038/s41588-018-0099-7.
    [15] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing[J]. J R Stat Soci, 1995, 57(1): 289-300. DOI: 10.1111/j.2517-6161.1995.tb02031.x.
    [16] Mannie MD, Abbott DJ, Blanchfield L. Cytokine-neuroantigen fusion proteins represent a novel therapeutic approach for EAE (48.10)[J]. J Immunol, 2009, 182(Sup 1): 48.10. DOI: 10.4049/jimmunol.182.Supp.48.10.
    [17] Qin XJ. Interleukin-16 in tuberculous and malignant pleural effusions[J]. Eur Respir J, 2005, 25(4): 605-611. DOI: 10.1183/09031936.05.00090804.
    [18] Su H, Weng S, Luo L, et al. Mycobacterium tuberculosis hijacks host macrophages-derived interleukin 16 to block phagolysosome maturation for enhancing intracellular growth: IL-16 enhances Mtb intracellular survival[J]. Emerg Microbes Infec, 2024: 2322663. DOI: 10.1080/22221751.2024.2322663.
    [19] Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells[J]. Immunity, 2002, 16(6): 779-790. DOI: 10.1016/S1074-7613(02)00324-2.
    [20] Remoli ME, Gafa V, Giacomini E, et al. IFN-β modulates the response to TLR stimulation in human DC: involvement of IFN regulatory factor-1 (IRF-1) in IL-27 gene expression[J]. Eur J Immunol, 2007, 37(12): 3499-3508. DOI: 10.1002/eji.200737566.
    [21] Pirhonen J, Sirén J, Julkunen I, et al. IFN-α regulates toll-like receptor-mediated IL-27 gene expression in human macrophages[J]. J Leukocyte Biol, 2007, 82(5): 1185-1192. DOI: 10.1189/jlb.0307157.
    [22] Moideen K, Kumar NP, Bethunaickan R, et al. Heightened systemic levels of anti-inflammatory cytokines in pulmonary tuberculosis and alterations following anti-tuberculosis treatment[J]. Cytokine, 2020, 127: 154929. DOI: 10.1016/j.cyto.2019.154929.
    [23] Skouras VS, Magkouta SF, Psallidas I, et al. Interleukin-27 improves the ability of adenosine deaminase to rule out tuberculous pleural effusion regardless of pleural tuberculosis prevalence[J]. Infect Dis, 2015, 47(7): 477-483. DOI: 10.3109/23744235.2015.1019919.
    [24] Torrado E, Fountain JJ, Liao M, et al. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection[J]. J Exp Med, 2015, 212(9): 1449-1463. DOI: 10.1084/jem.20141520.
    [25] Erdmann H, Behrends J, Ritter K, et al. The increased protection and pathology in Mycobacterium tuberculosis-infected IL-27R-alpha-deficient mice is supported by IL-17A and is associated with the IL-17A-induced expansion of multifunctional T cells[J]. Mucosal Immunol, 2018, 11(4): 1168-1180. DOI: 10.1038/s41385-018-0026-3.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  13
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2024-04-19
  • 网络出版日期:  2024-08-19
  • 刊出日期:  2024-07-10

目录

    /

    返回文章
    返回