Effect of phenol exposure and single nucleotide polymorphisms interaction on renal function
-
摘要:
目的 探究双酚A(bisphenol A, BPA)、双酚F(bisphenol F, BPF)、三氯生(triclosan, TCS)暴露与基因位点多态性的交互作用对肾功能的影响。 方法 2016―2021年在华中科技大学同济医学院附属同济医院的体检人群中,招募了414名成年人作为研究对象,通过问卷形式收集人群信息,采集其尿液样本。检测研究对象尿液样本中3种酚类暴露物(BPA、BPF和TCS)的内暴露水平。测定血清肌酐水平,计算估算的肾小球滤过率(estimated glomerular filtration rate, eGFR)作为肾功能的指标。提取研究对象血液样本中的DNA进行高通量基因分型,并进行基因组填补和质量控制,通过全基因组关联研究分析影响eGFR水平的基因-环境交互作用,最后对显著性和提示性遗传位点进行位置和功能注释,进而探究其相关生物学功能。 结果 通过高通量基因分型和基因型填补后,共得到414例样本的4 135 024个单核苷酸多态性(single nucleotide polymorphisms, SNPs)位点的基因型数据。在进一步鉴定中发现3个与BPA在影响肾功能水平上存在交互作用的SNPs位点(rs60391380、rs56108314和rs73082740),其位于4p16.3染色体区段并靠近ADRA2C基因,其中最显著的是rs60391380(β交互作用=-0.042, 95% CI: -0.057~-0.028, P=1.565×10-8),结合表观修饰推测该遗传位点可能与BPA发生交互作用,激活其调控元件的功能,上调ADRA2C基因的表达,进而影响肾功能。本研究还探寻到844个提示性BPA交互作用位点(P < 5×10-6)。在eGFR全基因组关联分析中发现与BPF存在交互作用的提示性位点52个,未发现显著性位点;对于TCS未发现存在交互作用的显著性和提示性位点。 结论 在人群中,BPA暴露与遗传变异存在基因-环境交互作用,共同影响肾功能。未发现BPF和TCS暴露存在影响肾功能水平的基因-环境交互作用。 Abstract:Objective To investigate of the interaction between exposure to bisphenol A (BPA), bisphenol F (BPF), triclosan (TCS) and gene locus polymorphism on renal function. Methods A total of 414 adults were recruited as research subjects from the physical examination population of Tongji Hospital affiliated with Tongji Medical College of Huazhong University of Science and Technology between 2016 and 2021. Population information was collected through questionnaires, and urine samples were obtained for analysis. The internal exposure levels of three phenolic compounds, namely BPA, BPF, and TCS, were subsequently measured in the urine samples of the study subjects. Serum creatinine levels were measured to determine renal function, and eGFR was calculated as an indicator. Blood samples were taken from research subjects to extract DNA for high-throughput genotyping, genome filling, and quality control. Genome-wide association studies (GWAS) were then conducted to analyze gene-environment interactions affecting eGFR levels. Finally, the obtained significant and suggestive genetic loci were annotated by location and function to explore their related biological functions. Results Following high-throughput genotyping and genotype filling, 414 samples were obtained with genotype data for 4 135 024 single nucleotide polymorphisms (SNPs) loci. During further identification, three SNPs loci (rs60391380, rs56108314, and rs73082740) were found to have a significant interaction with BPA in relation to renal function. These loci were located in the 4p16.3 chromosome segment, close to the ADRA2C gene. The most significant interaction effect was found for rs60391380, with a beta value of -0.042 (-0.057--0.028) and a P-value of 1.565×10-8. Based on epigenetic modifications, it was speculated that this genetic locus might interact with BPA, activate its regulatory elements, and upregulate the expression of ADRA2C, thereby affecting renal function. Additionally, 844 BPA interaction sites were explored, with suggestive results (P < 5×10-6). In the eGFR genome-wide association analysis, 52 loci were found to interact with BPF in a suggestive manner, but no significant loci were identified. For TCS, no significant or suggestive sites of interaction were found. Conclusions The interaction between BPA and SNPs had a joint effect on renal function. However, no statistically significant gene-environment interactions affecting renal function were found for BPF and TCS. -
图 1 BPA、BPF和TCS暴露和全基因组SNP交互作用与eGFR关联的曼哈顿图
A:BPA交互作用与eGFR关联的曼哈顿图;B:BPF交互作用与eGFR关联的曼哈顿图;C:TCS交互作用与eGFR关联的曼哈顿图; 红色实线代表P值为5×10-8的统计学显著性阈值,黄色实线代表P值为5×10-6的提示性阈值;eGFR: 估算的肾小球滤过率;BPA: 双酚A;BPF: 双酚F;TCS: 三氯生。
Figure 1. Manhattan plot of eGFR genome-wide Phenolic-SNP interactions
A: manhattan plot of eGFR genome-wide BPA-SNP interaction; B: manhattan plot of eGFR genome-wide BPF-SNP interaction; C: manhattan plot of eGFR genome-wide TCS-SNP interaction; eGFR: estimated glomerular filtration rate; BPA: bisphenol A; BPF: bisphenol F; TCS: triclosan.
表 1 eGFR及酚类物质暴露水平及分布
Table 1. eGFR and phenolic exposure levels and distribution
人口学特征
Demographic characteristiceGFR/(mL·min-1·1.73 m-2)① P值②
value肌酐校正的BPA
Creatinine-corrected BPA/(μg·L-1)①P值②
value肌酐校正的BPF
Creatinine-corrected BPF/(μg·L-1)①P值②
value肌酐校正的TCS
Creatinine-corrected TCS/(μg·L-1)①P值②
value年龄组/岁 Age group/years < 0.001 0.214 0.799 0.192 ≤60 (n=238) 98.62 (85.43, 105.93) 0.90 (0.39, 2.60) 0.10 (0.03, 0.50) 0.50 (0.14, 1.90) >60 (n=176) 88.09 (74.12, 97.35) 0.91 (0.46, 2.50) 0.09 (0.03, 0.40) 0.83 (0.26, 2.60) 性别 Gender < 0.001 0.135 0.364 0.627 男性 Male(n=278) 96.97 (86.09, 104.97) 0.90 (0.42, 2.40) 0.10 (0.03, 0.40) 0.60 (0.17, 2.00) 女性 Female(n=136) 85.01 (68.49, 98.36) 0.90 (0.41, 2.80) 0.10 (0.03, 0.40) 0.80 (0.2, 2.30) 吸烟状况 Smoking status 0.003 0.685 0.044 0.208 吸烟 Smoking(n=159) 96.93 (86.51, 104.00) 1.10 (0.45, 2.70) 0.20 (0.03, 0.70) 0.60 (0.16, 1.70) 不吸烟 Non-smoking(n=255) 92.18 (76.16, 102.18) 0.88 (0.39, 2.50) 0.08 (0.03, 0.30) 0.70 (0.19, 2.40) 饮酒状况 Drinking status 0.001 0.355 0.878 0.446 饮酒 Drinking(n=148) 97.49 (85.79, 105.74) 0.80 (0.38, 2.20) 0.10 (0.03, 0.40) 0.60 (0.18, 2.50) 不饮酒 Non-drinking(n=266) 92.86 (76.04, 102.08) 1.00 (0.42, 2.70) 0.10 (0.03, 0.40) 0.70 (0.18, 2.10) BMI/(kg·m-2) 0.106 0.077 0.188 0.425 < 24(n=197) 92.94 (75.82, 102.46) 0.90 (0.39, 2.80) 0.10 (0.03, 0.50) 0.70 (0.17, 2.00) ≥24(n=217) 94.25 (83.24, 103.74) 0.90 (0.44, 2.10) 0.10 (0.03, 0.40) 0.60 (0.19, 2.50) 注:eGFR,估算的肾小球滤过率;BPA,双酚A;BPF,双酚F;TCS,三氯生。
①以M(IQR)表示;②采用U检验。
Note: eGFR, estimated glomerular filtration rate; BPA, bisphenol A; BPF, bisphenol F; TCS, triclosan.
① M(IQR); ② U-test was used.表 2 eGFR相关的BPA暴露与遗传变异交互作用显著性位点
Table 2. eGFR-associated genome-wide BPA interaction analysis of significant SNPs loci
SNPs 染色体
Chromosome基因
Gene染色体区段
Loci功能区域
Function风险/参照等位基因
alternative allele/reference allelers60391380 chr4 ADRA2C 4p16.3 intergenic G/A rs56108314 chr4 ADRA2C 4p16.3 intergenic C/T rs73082740 chr4 ADRA2C 4p16.3 intergenic C/G SNPs SNP与eGFR关联
SNP association with eGFR①BPA与eGFR关联
BPA association with eGFR①BPA-SNP交互作用
BPA interaction with SNPs①β值value (95% CI) P值value β值value (95% CI) P值value β值value (95% CI) Pint rs60391380 -0.030 (-0.047~-0.012) 7.728×10-4 -0.002 (-0.003~-0.001) 6.230×10-3 -0.042 (-0.057~-0.028) 1.565×10-8 rs56108314 0.001 (-0.008~0.019) 0.463 -0.002 (-0.003~-0.001) 2.997×10-3 -0.042 (-0.056~-0.027) 2.756×10-8 rs73082740 0.002 (-0.014~0.014) 0.981 -0.002 (-0.003~-0.001) 3.214×10-3 -0.041 (-0.055~-0.026) 3.864×10-8 注:SNPs,单核苷酸多态性;eGFR,估算的肾小球滤过率;BPA,双酚A。
①采用多元线性回归模型计算,并对年龄、性别、BMI、吸烟状况和饮酒状况进行了调整。
Note: SNPs, single nucleotide polymorphisms; eGFR, estimated glomerular filtration rate; BPA, bisphenol A.
① Calculated using multiple linear regression models and adjusted for age, gender, BMI, smoking status, and drinking status.表 3 SNPs不同基因型分层人群中BPA与eGFR关联
Table 3. Association between BPA and eGFR in Genotypic Stratified Population
SNPs 基因型
Genotype人数(占比/%)
Number of people (proportion/%)eGFR水平 eGFR level① β值 value (95% CI) P值 value rs60391380 AA 261 (63.04) -0.015 (-0.032~0.002) 0.091 AG+GG 153 (36.96) -0.024 (-0.043~-0.005) 0.013 rs56108314 TT 261 (63.04) -0.014 (-0.031~0.003) 0.098 TC+CC 153 (36.96) -0.024 (-0.043~-0.005) 0.014 rs73082740 GG 262 (63.28) -0.014 (-0.031~0.004) 0.122 GC+CC 152 (36.72) -0.027 (-0.046~-0.009) 0.005 注:SNPs,单核苷酸多态性;eGFR,估算的肾小球滤过率;BPA,双酚A。
①采用多元线性回归模型计算,并对年龄、性别、BMI、吸烟状况和饮酒状况进行了调整。
Note: SNPs, single nucleotide polymorphisms; eGFR, estimated glomerular filtration rate; BPA, bisphenol A.
① Calculated using multiple linear regression models and adjusted for age, gender, BMI, smoking status, and drinking status. -
[1] Chen TK, Hoenig MP, Nitsch D, et al. Advances in the management of chronic kidney disease [J]. BMJ, 2023, 383: e074216. DOI: 10.1136/bmj-2022-074216. [2] Stevens LA, Coresh J, Greene T, et al. Assessing kidney function--measured and estimated glomerular filtration rate [J]. N Engl J Med, 2006, 354(23): 2473-2483, DOI: 10.1056/NEJMra054415. [3] Navaneethan SD, Zoungas S, Caramori ML, et al. Diabetes management in chronic kidney disease: synopsis of the KDIGO 2022 clinical practice guideline update [J]. Ann Intern Med, 2023, 176(3): 381-387. DOI: 10.7326/m22-2904. [4] Obrador GT, Schultheiss UT, Kretzler M, et al. Genetic and environmental risk factors for chronic kidney disease [J]. Kidney Int Suppl, 2017, 7(2): 88-106. DOI: 10.1016/j.kisu.2017.07.004. [5] Freedman BI, Divers J, Palmer ND. Population ancestry and genetic risk for diabetes and kidney, cardiovascular, and bone disease: modifiable environmental factors may produce the cures [J]. Am J Kidney Dis, 2013, 62(6): 1165-1175. DOI: 10.1053/j.ajkd.2013.05.024. [6] Hobson S, Arefin S, Witasp A, et al. Accelerated vascular aging in chronic kidney disease: the potential for novel therapies [J]. Circ Res, 2023, 132(8): 950-969. DOI: 10.1161/circresaha.122.321751. [7] 王璐, 何恒, 蔡晓敏, 等. 氧化应激在环境酚类暴露与估计肾小球滤过率关联中的中介效应[J]. 华中科技大学学报(医学版), 2023, 52(4): 431-438. DOI: 10.3870/j.issn.1672-0741.2023.04.001.Wang L, He H, Cai XM, et al. Mediating role of oxidative stress in the association between environmental phenol exposure and estimated glomerular filtration rate [J]. Acta Med Univ Sci Technol Huazhong, 2023, 52(4): 431-438. DOI: 10.3870/j.issn.1672-0741.2023.04.001. [8] Zhang X, Flaws JA, Spinella MJ, et al. The relationship between typical environmental endocrine disruptors and kidney disease [J]. Toxics, 2022, 11(1): 32. DOI: 10.3390/toxics11010032. [9] Nie HL, Wang F, Zhang Y, et al. Associations of serum bisphenol A levels with incident chronic kidney disease risk [J]. Sci Total Environ, 2021, 771: 145401. DOI: 10.1016/j.scitotenv.2021.145401. [10] Kang JH, Asai D, Toita R. Bisphenol A (BPA) and cardiovascular or cardiometabolic diseases [J]. J Xenobiot, 2023, 13(4): 775-810. DOI: 10.3390/jox13040049. [11] 唐中伟, 王慧敏, 张卓, 等. 基于氧化应激与细胞凋亡探究双酚A慢性暴露致小鼠肾毒性作用机制[J]. 生物工程学报, 2023, 39(1): 372-385, DOI: 10.13345/j.cjb.220360.Tang ZW, Wang HM, Zhang Z, et al. Mechanism of nephrotoxicity induced by chronic exposure of bisphenol A in mice based on oxidative stress and cell apoptosis [J]. Chin J Biotech, 2023, 39(1): 372-385, DOI: 10.13345/j.cjb.220360. [12] 赫淑铭, 潘文筱, 刘娴, 等. 双酚类化合物的生物代谢机理研究进展[J]. 环境化学, 2024, 43(3): 711-721. DOI: 10.7524/j.issn.0254-6108.2023041401.He SM, Pan WX, Liu X, et al. Research progresses of biotransformation mechanisms of bisphenols [J]. Environmental Chemistry, 2024, 43(3): 711-721. DOI: 10.7524/j.issn.0254-6108.2023041401. [13] Rasouly HM, Groopman EE, Heyman-Kantor R, et al. The burden of candidate pathogenic variants for kidney and genitourinary disorders emerging from exome sequencing [J]. Ann Intern Med, 2019, 170(1): 11-21. DOI: 10.7326/M18-1241. [14] Köttgen A, Pattaro C, Böger CA, et al. New loci associated with kidney function and chronic kidney disease [J]. Nat Genet, 2010, 42(5): 376-384. DOI: 10.1038/ng.568. [15] Freedman BI. APOL1 and nephropathy progression in populations of African ancestry [J]. Semin Nephrol, 2013, 33(5): 425-432. DOI: 10.1016/j.semnephrol.2013.07.004. [16] Stevens LA, Claybon MA, Schmid CH, et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities [J]. Kidney Int, 2011, 79(5): 555-562. DOI: 10.1038/ki.2010.462. [17] Colorado-Yohar SM, Castillo-González AC, Sánchez-Meca J, et al. Concentrations of bisphenol-a in adults from the general population: a systematic review and meta-analysis [J]. Sci Total Environ, 2021, 775: 145755. DOI: 10.1016/j.scitotenv.2021.145755. [18] Yang YJ, Guan J, Yin J, et al. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in South China [J]. Chemosphere, 2014, 112: 481-486. DOI: 10.1016/j.chemosphere.2014.05.004. [19] Guo JQ, Wu CH, Zhang JM, et al. Early life triclosan exposure and neurodevelopment of children at 3 years in a prospective birth cohort [J]. Int J Hyg Environ Health, 2020, 224: 113427. DOI: 10.1016/j.ijheh.2019.113427. [20] Pollock T, Arbuckle TE, Guth M, et al. Associations among urinary triclosan and bisphenol A concentrations and serum sex steroid hormone measures in the Canadian and U.S. Populations [J]. Environ Int, 2021, 146: 106229. DOI: 10.1016/j.envint.2020.106229. [21] Kang H, Lee JP, Choi K. Exposure to phthalates and environmental phenols in association with chronic kidney disease (CKD) among the general US population participating in multi-cycle NHANES (2005-2016) [J]. Sci Total Environ, 2021, 791: 148343. DOI: 10.1016/j.scitotenv.2021.148343. [22] Priego AR, Parra EG, Mas S, et al. Bisphenol A modulates autophagy and exacerbates chronic kidney damage in mice [J]. Int J Mol Sci, 2021, 22(13): 7189. DOI: 10.3390/ijms22137189. [23] Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, et al. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism [J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(1): 166296. DOI: 10.1016/j.bbadis.2021.166296. [24] Trasande L, Attina TM, Trachtman H. Bisphenol A exposure is associated with low-grade urinary albumin excretion in children of the United States [J]. Kidney Int, 2013, 83(4): 741-748. DOI: 10.1038/ki.2012.422. [25] Schlosser P, Tin A, Matias-Garcia PR, et al. Meta-analyses identify DNA methylation associated with kidney function and damage [J]. Nat Commun, 2021, 12(1): 7174. DOI: 10.1038/s41467-021-27234-3. [26] Lee J, Oh S, Kang H, et al. Environment-wide association study of CKD [J]. Clin J Am Soc Nephrol, 2020, 15(6): 766-775. DOI: 10.2215/CJN.06780619. [27] Kim JO, Jeon YJ, Kim OJ, et al. Association between common genetic variants of α2A-, α2B- and α2C-adrenoceptors and the risk of silent brain infarction [J]. Mol Med Rep, 2014, 9(6): 2459-2466. DOI: 10.3892/mmr.2014.2072. [28] Ma Y, Liu HH, Wu JX, et al. The adverse health effects of bisphenol A and related toxicity mechanisms [J]. Environ Res, 2019, 176: 108575. DOI: 10.1016/j.envres.2019.108575. [29] Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease [J]. BMC Genomics, 2009, 10: 388. DOI: 10.1186/1471-2164-10-388.