-
摘要:
目的 研究RNA N6-甲基腺嘌呤(N6-methyladenosine, m6A)甲基化调节因子在慢性肾脏病(chronic kidney disease, CKD)中的表达变化,为疾病预防提供新的思路和靶点。 方法 选取中国华北地区某市社区人群作为研究对象,比较病例组(151人)和对照组(362人)基线特征,并分析RNA m6A甲基化调节因子和肾功能指标的相关性,利用LASSO回归筛选相关变量用于构建多因素logistic回归分析模型;通过受试者工作特征曲线、校准曲线和决策曲线对模型进行验证。 结果 病例组中甲基转移酶样蛋白14(methyltransferase like 14, METTL14)表达水平更高(P<0.05),相关性分析结果显示,METTL14(rs=-0.110, P<0.05)、去甲基化酶AlkB同源物5(human Alk B homolog 5, ALKBH5)(rs=-0.218, P<0.001)均与转化生长因子(transforming growth factor, TGF)-β1呈负相关;脂肪量和肥胖相关蛋白(fat mass and obesity-associated protein, FTO)与尿素(rs=0.169, P<0.001)、TGF-β1(rs=0.088, P<0.05)均呈正相关。回归分析结果显示,性别、年龄、血肌酐、METTL14、总胆固醇和家庭人均月收入是CKD患病的预测因子(均P<0.05)。基于此构建风险预测模型,曲线下面积(area under curve, AUC)值为0.796(95% CI: 0.752~0.840),Bootstrap法验证平均绝对误差值为0.036,通过Hosmer-Lemeshow拟合优度检验,预测模型有较好的校准能力(χ2 =12.57, P=0.128)。 结论 METTL14在CKD患者中表达水平较高,与CKD发生风险存在相关性。 Abstract:Objective To investigate in the expression changes of RNA N6-methyladenosine (m6A) methylation regulators in patients with chronic kidney disease (CKD) and provide novel ideas for disease prevention. Methods A community population in a city in North China was selected to compare the baseline characteristics between the case group (151) and control (362) group. The correlation between the expression of the regulators of RNA m6A methylation and renal function-related indexes was analyzed. Screening of relevant variables for the construction of multivariable logistic regression models using LASSO regression, and its validity was assessed using the receiver operating characteristic curve (ROC), calibration curve and decision curve analysis (DCA). Results The expression level of methyltransferase like 14 (METTL14) was higher in the case group (P < 0.05). Correlation analysis revealed that METTL14 (rs=-0.110, P < 0.05) and human Alk B homolog 5 (ALKBH5) (rs=-0.218, P < 0.001) were negatively correlated with transforming growth factor (TGF)-β1. Fat mass and obesity-associated protein (FTO) was positively correlated with Urea (rs=0.169, P < 0.001) and TGF-β1 (rs=0.088, P < 0.05). The regression analysis results indicated that gender, age, serum creatinine, METTL14, total cholesterol, and per capita monthly household income were predictors for CKD (all P < 0.05). A risk prediction model was constructed based on this, and the area under the curve (AUC) was 0.796 (95% CI: 0.752-0.840). The average absolute error verified by bootstrap method was 0.036. The Hosmer Lemeshow goodness of fit test showed that the prediction model had good calibration ability (χ2 =12.57, P=0.128). Conclusions The expression level of METTL14 is higher in patients with CKD. There is a correlation between METTL14 and the development of CKD. -
Key words:
- Chronic kidney disease /
- RNA methylation /
- Nomograms /
- LASSO regression
-
图 2 m6A甲基化调节因子与TGF-β1及肾功能指标的相关性矩阵散点图
m6A: RNA N6-甲基腺嘌呤; ALKBH5: 去甲基化酶AlkB同源物5; FTO: 脂肪量和肥胖相关蛋白; METTL3: 甲基转移酶样蛋白3; METTL14: 甲基转移酶样蛋白14; UNAG,β-N-乙酰氨基葡萄糖苷酶; TGF-β1,转化生长因子-β1; SCr,血肌酐; a:P<0.05;b:P<0.01;c:P<0.001。
Figure 2. Correlation matrix scatter plot of m6A methylation regulators with TGF-β1 and renal function indices
m6A: N6-methyladenosine; ALKBH5: human Alk B homolog 5; FTO: fat mass and obesity-associated protein; METTL3: methyltransferase like 3; METTL14: methyltransferase like 14; UNAG, urinary β-N-acetyl-glucosidase; TGF-β1, transforming growth factor-β1; SCr, serum creatinine; a: P < 0.05;b: P < 0.01;c: P < 0.001。
表 1 研究对象的基本特征
Table 1. Basic characteristics of study subjects
变量
Variable对照组
Control group① (n=362)病例组
Case group① (n=151)χ2/Z值
valueP值
value性别 Gender 17.409 < 0.001 女性 Female 174(48.1) 103(68.2) 男性 Male 188(51.9) 48(31.8) 年龄/岁 Age/years 66(63, 70) 69(65, 75) -4.817 < 0.001 婚姻状态 Marital status 10.058 0.002 非在婚(未婚、离异、丧偶等) Non-marital (unmarried, divorced, widowed, etc) 42(11.6) 34(22.5) 在婚 In marriage 320(88.4) 117(77.5) 受教育程度 Educational attainment -2.164 0.030 小学及以下 Elementary school and below 66(18.2) 34(22.5) 初中 Junior high school 118(32.6) 57(37.7) 专科/高中 Junior college/high School 146(40.3) 54(35.8) 本科及以上 Bachelor′s degree or above 32(8.8) 6(3.9) 家庭人均月收入/元 Household per capita monthly income/yuan -1.551 0.121 <3 000 154(42.5) 67(44.4) 3 000~<5 000 159(43.9) 80(53.0) 5 000~<7 000 34(9.4) 3(2.0) ≥7 000 15(4.1) 1(0.7) 吸烟 Smoking 1.886 0.170 否 No 288(79.6) 128(84.8) 是 Yes 74(20.4) 23(15.2) 周围人吸烟情况 Smoking by people around you 1.184 0.277 否 No 280(77.3) 110(72.8) 是 Yes 82(22.7) 41(27.2) 饮酒 Drinking 5.221 0.022 否 No 303(83.7) 138(91.4) 是 Yes 59(16.3) 13(8.6) 体育锻炼 Physical activity -1.405 0.160 每天 Every day 264(72.9) 118(78.1) 每周3~5次 3-5 times a week 20(5.5) 8(5.3) 每周≤2次 ≤2 times a week 25(6.9) 12(7.9) 基本不运动 Basically no exercise 53(14.6) 13(8.6) 睡眠(自评) Sleep(self-rated) -0.857 0.392 好 Good 227(62.7) 100(66.2) 一般 Not bad 60(16.6) 25(16.6) 不好 Bad 75(20.7) 26(17.2) BMI/(kg·m-2) 6.539 0.011 <28 278(76.8) 131(86.8) ≥28 84(23.2) 20(13.2) 糖尿病 Diabetes 0.698 0.403 否 No 290(80.1) 116(76.8) 是 Yes 72(19.9) 35(23.2) 高血压 Hypertension 0.134 0.715 否 No 171(47.2) 74(49.0) 是 Yes 191(52.8) 77(51.0) 冠心病 Coronary heart disease 7.481 0.006 否 No 321(88.7) 120(79.5) 是 Yes 41(11.3) 31(20.5) TC/(mmol·L-1) -0.670 0.503 <5.2 204(56.4) 84(55.6) 5.2~<6.2 111(30.7) 38(25.2) ≥6.2 47(13.0) 29(19.2) TG/(mmol·L-1) -0.492 0.623 <1.7 209(57.7) 93(61.6) 1.7~<2.3 82(22.7) 26(17.2) ≥2.3 71(19.6) 32(21.2) LDL-C/(mmol·L-1) -2.477 0.013 <3.4 291(80.4) 106(70.2) 3.4~<4.1 45(12.4) 29(19.2) ≥4.1 26(7.2) 16(10.6) HDL-C/(mmol·L-1) 2.019 0.155 <1 21(5.8) 14(9.3) ≥1 341(94.2) 137(90.7) 尿素 Urea/(mmol·L-1) 4.90(4.20, 5.70) 5.45(4.60, 6.30) -3.928 < 0.001 SCr/(μmol·L-1) 64.80(57.20, 75.00) 83.70(67.70, 92.10) -8.626 < 0.001 UNAG/(U·g-1Cr) 9.65(4.70, 17.74) 11.44(5.31, 20.50) -0.939 0.348 TGF-β1/(ng·mL-1) 27.31(13.35, 50.02) 23.57(10.82, 43.75) -1.643 0.100 注:TC,总胆固醇;TG,三酰甘油;LDL-C,低密度脂蛋白胆固醇;HDL-C,高密度脂蛋白胆固醇;SCr,血肌酐;UNAG,β-N-乙酰氨基葡萄糖苷酶;TGF-β1,转化生长因子-β1。
①以人数(占比/%)或M(P25, P75)表示。
Note: TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; SCr, serum creatinine; UNAG, urinary β-N-acetyl-glucosidase; TGF-β1, transforming growth factor-β1.
① Number of people (proportion/%) or M(P25, P75).表 2 慢性肾脏病患病风险的多因素logistic回归分析
Table 2. Multivariate logistic regression model of chronic kidney disease risk
变量
Variableβ值
valuesx值
valueWald值 value P值
valueOR值 value (95% CI) 性别 Gender -0.689 0.238 8.346 0.004 0.502(0.315~0.801) 年龄/岁 Age/years 0.059 0.015 15.134 < 0.001 1.061(1.030~1.093) 肥胖 Obesity -0.481 0.298 2.596 0.107 0.618(0.345~1.110) SCr/(μmol·L-1) 0.038 0.006 34.334 < 0.001 1.039(1.026~1.052) lg(METTL14) 0.635 0.266 5.698 0.017 1.886(1.120~3.176) TGF-β1/(ng·mL-1) -0.006 0.005 2.584 0.108 0.994(0.987~1.001) TC/(mmol·L-1) < 5.2 5.2~<6.2 -0.014 0.260 0.003 0.956 0.986(0.593~1.640) ≥6.2 1.097 0.330 11.071 < 0.001 2.996(1.570~5.718) 家庭人均月收入/元 Household per capita monthly income/yuan < 3 000 3 000~<5 000 0.072 0.234 0.095 0.758 1.075(0.679~1.701) 5 000~<7 000 -2.482 0.897 7.658 0.006 0.084(0.014~0.485) ≥7 000 -1.514 1.092 1.924 0.165 0.220(0.026~1.869) 注:TC,总胆固醇;SCr,血肌酐;METTL14,甲基转移酶样蛋白14;TGF-β1,转化生长因子-β1。
Note: TC, total cholesterol; SCr, serum creatinine; METTL14, methyltransferase like 14; TGF-β1, transforming growth factor-β1. -
[1] Liang S, Wu YS, Li DY, et al. Autophagy and renal fibrosis [J]. Aging Dis, 2022, 13(3): 712-731. DOI: 10.14336/AD.2021.1027. [2] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis [J]. Chem Biol Interact, 2018, 292: 76-83. DOI: 10.1016/j.cbi.2018.07.008. [3] GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the global burden of disease study 2017 [J]. Lancet, 2020, 395(10225): 709-733. DOI: 10.1016/S0140-6736(20)30045-3. [4] Jung HR, Lee J, Hong SP, et al. Targeting the m6A RNA methyltransferase METTL3 attenuates the development of kidney fibrosis [J]. Exp Mol Med, 2024, 56: 355-369. DOI: 10.1038/s12276-024-01159-5. [5] Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation [J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. DOI: 10.1038/s41580-019-0168-5. [6] Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism [J]. Cell Res, 2018, 28(6): 616-624. DOI: 10.1038/s41422-018-0040-8. [7] Foundation NK. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification [J]. Am J Kidney Dis, 2002, 39(2 Suppl 1): S1-S266. [8] Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate [J]. Ann Intern Med, 2009, 150(9): 604-612. DOI: 10.7326/0003-4819-150-9-200905050-00006. [9] Wang DX, Bao SY, Song NN, et al. FTO-mediated m6A mRNA demethylation aggravates renal fibrosis by targeting RUNX1 and further enhancing PI3K/AKT pathway [J]. FASEB J, 2024, 38(5): e23436. DOI: 10.1096/fj.202302041R. [10] Ning YC, Chen J, Shi YQ, et al. Genistein ameliorates renal fibrosis through regulation snail via m6A RNA demethylase ALKBH5 [J]. Front Pharmacol, 2020, 11: 579265. DOI: 10.3389/fphar.2020.579265. [11] Ortiz A, Mattace-Raso F, Soler MJ, et al. Ageing meets kidney disease [J]. Nephrol Dial Transplant, 2023, 38(3): 523-526. DOI: 10.1093/ndt/gfac199. [12] Taktak Ş, Öz HS. The relationship between depression, anxiety and stress levels on suicidal behavior in patients with schizophrenia [J]. Psychiatry Clin Psychopharmacol, 2023, 33(2): 108-116. DOI: 10.5152/pcp.2023.22606. [13] Zhai Q, Dou JT, Wen J, et al. Association between changes in lipid indexes and early progression of kidney dysfunction in participants with normal estimated glomerular filtration rate: a prospective cohort study [J]. Endocrine, 2022, 76(2): 312-323. DOI: 10.1007/s12020-022-03012-z. [14] Luyckx VA, Cherney DZI, Bello AK. Preventing CKD in developed countries [J]. Kidney Int Rep, 2019, 5(3): 263-277. DOI: 10.1016/j.ekir.2019.12.003. [15] Baek HS, Park MJ, Song JY, et al. Association between serum total cholesterol and chronic kidney disease progression in children: results from the KNOW-PedCKD [J]. Pediatr Nephrol, 2023, 38(12): 4101-4109. DOI: 10.1007/s00467-023-06033-6. [16] Chen J, Ning YC, Zhang H, et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate [J]. Life Sci, 2019, 239: 117034. DOI: 10.1016/j.lfs.2019.117034. [17] Stubbs JR, House JA, Ocque AJ, et al. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden [J]. J Am Soc Nephrol, 2016, 27(1): 305-313. DOI: 10.1681/ASN.2014111063. [18] Higgins SP, Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis [J]. Cell Signal, 2018, 43: 1-10. DOI: 10.1016/j.cellsig.2017.11.005. [19] Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation [J]. Cell, 2017, 169(7): 1187-1200. DOI: 10.1016/j.cell.2017.05.045.