• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

m6A甲基化调节因子在慢性肾脏病中的预测价值

崔超群 张帆 李怡淳 张铁如 周涵 雷立健

崔超群, 张帆, 李怡淳, 张铁如, 周涵, 雷立健. m6A甲基化调节因子在慢性肾脏病中的预测价值[J]. 中华疾病控制杂志, 2024, 28(11): 1336-1343. doi: 10.16462/j.cnki.zhjbkz.2024.11.015
引用本文: 崔超群, 张帆, 李怡淳, 张铁如, 周涵, 雷立健. m6A甲基化调节因子在慢性肾脏病中的预测价值[J]. 中华疾病控制杂志, 2024, 28(11): 1336-1343. doi: 10.16462/j.cnki.zhjbkz.2024.11.015
CUI Chaoqun, ZHANG Fan, LI Yichun, ZHANG Tieru, ZHOU Han, LEI Lijian. The predictive value of m6A methylation regulators in chronic kidney disease[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(11): 1336-1343. doi: 10.16462/j.cnki.zhjbkz.2024.11.015
Citation: CUI Chaoqun, ZHANG Fan, LI Yichun, ZHANG Tieru, ZHOU Han, LEI Lijian. The predictive value of m6A methylation regulators in chronic kidney disease[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(11): 1336-1343. doi: 10.16462/j.cnki.zhjbkz.2024.11.015

m6A甲基化调节因子在慢性肾脏病中的预测价值

doi: 10.16462/j.cnki.zhjbkz.2024.11.015
基金项目: 

国家自然科学基金 81872701

详细信息
    通讯作者:

    雷立健,E-mail: wwdlijian@sxmu.edu.cn

  • 中图分类号: R181

The predictive value of m6A methylation regulators in chronic kidney disease

Funds: 

National Natural Science Foundation of China 81872701

More Information
  • 摘要:   目的  研究RNA N6-甲基腺嘌呤(N6-methyladenosine, m6A)甲基化调节因子在慢性肾脏病(chronic kidney disease, CKD)中的表达变化,为疾病预防提供新的思路和靶点。  方法  选取中国华北地区某市社区人群作为研究对象,比较病例组(151人)和对照组(362人)基线特征,并分析RNA m6A甲基化调节因子和肾功能指标的相关性,利用LASSO回归筛选相关变量用于构建多因素logistic回归分析模型;通过受试者工作特征曲线、校准曲线和决策曲线对模型进行验证。  结果  病例组中甲基转移酶样蛋白14(methyltransferase like 14, METTL14)表达水平更高(P<0.05),相关性分析结果显示,METTL14(rs=-0.110, P<0.05)、去甲基化酶AlkB同源物5(human Alk B homolog 5, ALKBH5)(rs=-0.218, P<0.001)均与转化生长因子(transforming growth factor, TGF)-β1呈负相关;脂肪量和肥胖相关蛋白(fat mass and obesity-associated protein, FTO)与尿素(rs=0.169, P<0.001)、TGF-β1(rs=0.088, P<0.05)均呈正相关。回归分析结果显示,性别、年龄、血肌酐、METTL14、总胆固醇和家庭人均月收入是CKD患病的预测因子(均P<0.05)。基于此构建风险预测模型,曲线下面积(area under curve, AUC)值为0.796(95% CI: 0.752~0.840),Bootstrap法验证平均绝对误差值为0.036,通过Hosmer-Lemeshow拟合优度检验,预测模型有较好的校准能力(χ2 =12.57, P=0.128)。  结论  METTL14在CKD患者中表达水平较高,与CKD发生风险存在相关性。
  • 慢性肾脏病(chronic kidney disease, CKD)的病因众多,病程隐匿复杂,现有研究表明,肾间质纤维化是所有CKD进展至终末期肾功能衰竭(end-stage renal disease, ESRD)的共同病理过程[1]。TGF-β1/Smad信号通路是纤维化过程中经典的信号通路,转化生长因子(transforming growth factor, TGF)-β1被认为是重要的组织纤维化调节因子[2]。RNA甲基化主要调节上皮细胞间充质转化(epithelial-mesenchymal transition, EMT)[3],在肾纤维化中发挥重要作用,可通过调节RNA甲基化缓解肾纤维化的发生和发展[4]。RNA N6-甲基腺嘌呤(N6-methyladenosine, m6A)作为真核细胞mRNA上最丰富的化学修饰[5],是mRNA代谢的关键调节剂[6]。m6A甲基化是一个动态可逆的共转录反应,涉及多种m6A甲基化调节因子,主要包括甲基转移酶[如甲基转移酶样蛋白3(methyltransferase like 3, METTL3)和甲基转移酶样蛋白14(methyltransferase like 14, METTL14)]、去甲基化酶[如脂肪量和肥胖相关蛋白(fat mass and obesity-associated protein, FTO)、去甲基化酶AlkB同源物5(human Alk B homolog 5, ALKBH5)]和m6A结合蛋白。m6A修饰通过甲基化腺苷的方式改变RNA碱基组成,对RNA的稳定性、转运、翻译和降解等过程产生影响,从而调控基因表达和细胞功能。提示改变mRNA中m6A的调节可能为相关疾病的治疗策略提供新的视角。

    选取2021年5月―12月在中国华北地区某市社区进行体检的成年居民作为研究对象,纳入标准:(1)在中国华北地区某市居住≥5年者;(2)签署知情同意书者。排除标准:(1)听力障碍者;(2)重度痴呆和精神疾病患者;(3)生物样本及信息缺失者。本研究通过山西医科大学伦理委员会审批(伦理审批号:2018LL264)。

    CKD定义及诊断标准参照美国国家肾脏基金会发布的K/DOQI指南[7],估算的肾小球滤过率(estimated glomerular filtration rate, eGFR)根据CKD-EPI方程[8],通过研究对象的性别、年龄和空腹血肌酐(serum creatinine, SCr)水平计算。BMI的计算公式为BMI=体重(kg)/身高2(m2)。

    通过面对面问卷调查收集研究对象的一般情况(包括性别、年龄、婚姻状态、受教育程度、家庭人均月收入、吸烟、饮酒、体育锻炼、睡眠)和健康资料。采集研究对象空腹外周静脉血和晨尿,预处理后置-80 ℃冰箱贮存,等待实验室指标检测。

    使用全自动生化分析仪(山东博科)测定研究对象的SCr、尿素、总胆固醇(total cholesterol, TC)、三酰甘油(triglyceride, TG)、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol, HDL-C)和低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C);苦味酸比色法测定尿肌酐(urine creatinine, UCr)(南京建成);采用酶联免疫吸附实验法检测血清TGF-β1(博士德);采用硝基苯酚法测定尿中β-N-乙酰氨基葡萄糖苷酶(urinary β-N-acetyl-glucosidase, UNAG)(南京建成)。使用Trizol法(Invitrogen)提取外周血细胞RNA,使用TransScript反转录试剂盒(全式金)进行反转录,采用实时荧光定量聚合酶链式反应(quantitative real-time polymerase chain reaction, qPCR)试剂盒(全式金)检测外周血白细胞中m6A甲基化调节因子METTL3、METTL14、FTO、ALKBH5的相对表达水平,选择β-actin为内参基因,相关的引物序列为:ALKBH5,F:5′GTGACTGTGCTCAGTGGATATG3′,R:5′TGAACAGGCGATCTGAAGCAT3′;METTL3,F:5′CCAGCACAGCTTCAGCAGTTCC3′,R:5′GCGTGGAGATGGCAAGACAGATG3′;METTL14,F:5′GTTGGAACATGGATAGCCGC3′,R:5′ CAATGCTGTCGGCACTTTCA3 ′;FTO,F:5′CGAGAGCGCGAAGCTAAGA3′,R:5′GCTGCCACTGCTGATAGAAT3′;β-actin,F:5′TGGCACCCAGCACAATGAA3′,R:5′CTAAGTCATAGTCCGCCTAGAAGCA3′。

    采用EpiData 3.0软件平行双录入数据建库,使用SPSS 27.0软件和R 4.2.3软件进行统计分析。符合正态分布的计量资料使用x±s描述,组间比较采用t检验;非正态分布的计量资料使用M(P25, P75)表示,组间比较采用Wilcoxon法;计数资料使用例数和百分数描述,组间比较采用χ2检验或Fisher′s确切概率法,等级资料采用Wilcoxon法进行检验。基因的相对表达量采用2-△△Ct表示,使用Graphpad Prism 9.5软件进行绘图。采用Spearman分析指标间相关性,通过LASSO回归十折交叉验证选择最佳λ值,基于多变量logistic回归分析模型构建预测模型并绘制列线图。通过计算曲线下面积(area under curve, AUC)确定模型的判别能力,内部验证使用Bootstrap法(重复1 000次),使用Hosmer-Lemeshow拟合优度检验对预测模型的校准能力进行评估,并通过决策曲线分析(decision curve analysis, DCA)评估预后模型的临床实用性。检验水准α=0.05。

    本研究共纳入513名研究对象,其中对照组362人,病例组151人。病例组平均年龄为(69.21±8.27)岁,女性103人(68.2%);对照组平均年龄为(64.75±9.94)岁,女性174人(48.1%)。单因素分析结果显示,两组人群的性别、年龄、婚姻状态、受教育程度、饮酒、肥胖、是否患冠心病、LDL-C、尿素和SCr之间的差异均有统计学意义(均P<0.05)。见表 1

    表  1  研究对象的基本特征
    Table  1.  Basic characteristics of study subjects
    变量
    Variable
    对照组
    Control group (n=362)
    病例组
    Case group (n=151)
    χ2/Z
    value
    P
    value
    性别  Gender 17.409 < 0.001
      女性 Female 174(48.1) 103(68.2)
      男性 Male 188(51.9) 48(31.8)
    年龄/岁  Age/years 66(63, 70) 69(65, 75) -4.817 < 0.001
    婚姻状态  Marital status 10.058 0.002
      非在婚(未婚、离异、丧偶等)  Non-marital (unmarried, divorced, widowed, etc) 42(11.6) 34(22.5)
      在婚 In marriage 320(88.4) 117(77.5)
    受教育程度  Educational attainment -2.164 0.030
      小学及以下  Elementary school and below 66(18.2) 34(22.5)
      初中  Junior high school 118(32.6) 57(37.7)
      专科/高中  Junior college/high School 146(40.3) 54(35.8)
      本科及以上  Bachelor′s degree or above 32(8.8) 6(3.9)
    家庭人均月收入/元  Household per capita monthly income/yuan -1.551 0.121
      <3 000 154(42.5) 67(44.4)
      3 000~<5 000 159(43.9) 80(53.0)
      5 000~<7 000 34(9.4) 3(2.0)
      ≥7 000 15(4.1) 1(0.7)
    吸烟  Smoking 1.886 0.170
      否  No 288(79.6) 128(84.8)
      是  Yes 74(20.4) 23(15.2)
    周围人吸烟情况  Smoking by people around you 1.184 0.277
      否  No 280(77.3) 110(72.8)
      是  Yes 82(22.7) 41(27.2)
    饮酒  Drinking 5.221 0.022
      否  No 303(83.7) 138(91.4)
      是 Yes 59(16.3) 13(8.6)
    体育锻炼  Physical activity -1.405 0.160
      每天  Every day 264(72.9) 118(78.1)
      每周3~5次  3-5 times a week 20(5.5) 8(5.3)
      每周≤2次  ≤2 times a week 25(6.9) 12(7.9)
      基本不运动  Basically no exercise 53(14.6) 13(8.6)
    睡眠(自评)  Sleep(self-rated) -0.857 0.392
      好 Good 227(62.7) 100(66.2)
      一般  Not bad 60(16.6) 25(16.6)
      不好  Bad 75(20.7) 26(17.2)
    BMI/(kg·m-2) 6.539 0.011
      <28 278(76.8) 131(86.8)
      ≥28 84(23.2) 20(13.2)
    糖尿病  Diabetes 0.698 0.403
      否  No 290(80.1) 116(76.8)
      是  Yes 72(19.9) 35(23.2)
    高血压  Hypertension 0.134 0.715
      否 No 171(47.2) 74(49.0)
      是  Yes 191(52.8) 77(51.0)
    冠心病  Coronary heart disease 7.481 0.006
      否  No 321(88.7) 120(79.5)
      是  Yes 41(11.3) 31(20.5)
    TC/(mmol·L-1) -0.670 0.503
     <5.2 204(56.4) 84(55.6)
     5.2~<6.2 111(30.7) 38(25.2)
     ≥6.2 47(13.0) 29(19.2)
    TG/(mmol·L-1) -0.492 0.623
      <1.7 209(57.7) 93(61.6)
      1.7~<2.3 82(22.7) 26(17.2)
      ≥2.3 71(19.6) 32(21.2)
    LDL-C/(mmol·L-1) -2.477 0.013
      <3.4 291(80.4) 106(70.2)
      3.4~<4.1 45(12.4) 29(19.2)
      ≥4.1 26(7.2) 16(10.6)
    HDL-C/(mmol·L-1) 2.019 0.155
      <1 21(5.8) 14(9.3)
      ≥1 341(94.2) 137(90.7)
    尿素  Urea/(mmol·L-1) 4.90(4.20, 5.70) 5.45(4.60, 6.30) -3.928 < 0.001
    SCr/(μmol·L-1) 64.80(57.20, 75.00) 83.70(67.70, 92.10) -8.626 < 0.001
    UNAG/(U·g-1Cr) 9.65(4.70, 17.74) 11.44(5.31, 20.50) -0.939 0.348
    TGF-β1/(ng·mL-1) 27.31(13.35, 50.02) 23.57(10.82, 43.75) -1.643 0.100
    注:TC,总胆固醇;TG,三酰甘油;LDL-C,低密度脂蛋白胆固醇;HDL-C,高密度脂蛋白胆固醇;SCr,血肌酐;UNAG,β-N-乙酰氨基葡萄糖苷酶;TGF-β1,转化生长因子-β1。
    ①以人数(占比/%)或M(P25, P75)表示。
    Note: TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; SCr, serum creatinine; UNAG, urinary β-N-acetyl-glucosidase; TGF-β1, transforming growth factor-β1.
    ① Number of people (proportion/%) or M(P25, P75).
    下载: 导出CSV 
    | 显示表格

    病例组METTL14 mRNA相对表达量高于对照组,差异有统计学意义(Z=-2.410, P=0.016),其余相关酶的表达量在两组间的差异均无统计学意义(均P>0.05),见图 1

    图  1  两组间甲基转移酶和去甲基化酶的相对表达量
    a: 指与对照组相比,差异有统计学意义(Z=-2.410,P=0.016)。
    Figure  1.  Relative expression levels of methylation transferase and demethylase between two groups
    a: refers to a statistically significant difference compared to the control group(Z=-2.410, P < 0.05).

    对RNA m6A修饰酶表达水平进行对数转换,降低异常值对分析结果的影响。Spearman相关性分析结果显示,METTL14(rs=-0.110, P<0.05)、ALKBH5(rs=-0.218, P<0.001)均与TGF-β1呈负相关;FTO和尿素(rs=0.169, P<0.001)、TGF-β1(rs=0.088, P<0.05)均呈正相关。见图 2

    图  2  m6A甲基化调节因子与TGF-β1及肾功能指标的相关性矩阵散点图
    m6A: RNA N6-甲基腺嘌呤; ALKBH5: 去甲基化酶AlkB同源物5; FTO: 脂肪量和肥胖相关蛋白; METTL3: 甲基转移酶样蛋白3; METTL14: 甲基转移酶样蛋白14; UNAG,β-N-乙酰氨基葡萄糖苷酶; TGF-β1,转化生长因子-β1; SCr,血肌酐; a:P<0.05;b:P<0.01;c:P<0.001。
    Figure  2.  Correlation matrix scatter plot of m6A methylation regulators with TGF-β1 and renal function indices
    m6A: N6-methyladenosine; ALKBH5: human Alk B homolog 5; FTO: fat mass and obesity-associated protein; METTL3: methyltransferase like 3; METTL14: methyltransferase like 14; UNAG, urinary β-N-acetyl-glucosidase; TGF-β1, transforming growth factor-β1; SCr, serum creatinine; a: P < 0.05;b: P < 0.01;c: P < 0.001。

    以CKD为结局变量,通过十折交叉验证法选择模型中的最优调和系数λ,最终筛选出的变量有性别、年龄、METTL14、TGF-β1、SCr、是否肥胖、家庭人均月收入、TC、TG和LDL-C,见图 3

    图  3  基于LASSO回归的特征变量选择
    A:十倍交叉验证图;B:收缩系数图。
    Figure  3.  Predictors selection based on LASSO regression
    A: ten fold cross-validation profile; B: LASSO coefficient profile.

    采用条件向后法建立多因素logistic回归分析模型,结果见表 2。性别、年龄、SCr、METTL14、TC和家庭人均月收入这6个预测指标差异均有统计学意义(均P<0.05)。基于这些独立预测因子构建列线图预测CKD患病风险。随着年龄、METTL14、SCr的升高,CKD患病风险也随之增高;男性、TC水平较低和家庭人均月收入较高时,CKD患病风险较低。见图 4A

    表  2  慢性肾脏病患病风险的多因素logistic回归分析
    Table  2.  Multivariate logistic regression model of chronic kidney disease risk
    变量
    Variable
    β
    value
    sx
    value
    Wald值  value P
    value
    OR值  value (95% CI)
    性别  Gender -0.689 0.238 8.346 0.004 0.502(0.315~0.801)
    年龄/岁  Age/years 0.059 0.015 15.134 < 0.001 1.061(1.030~1.093)
    肥胖  Obesity -0.481 0.298 2.596 0.107 0.618(0.345~1.110)
    SCr/(μmol·L-1) 0.038 0.006 34.334 < 0.001 1.039(1.026~1.052)
    lg(METTL14) 0.635 0.266 5.698 0.017 1.886(1.120~3.176)
    TGF-β1/(ng·mL-1) -0.006 0.005 2.584 0.108 0.994(0.987~1.001)
    TC/(mmol·L-1)
       < 5.2
      5.2~<6.2 -0.014 0.260 0.003 0.956 0.986(0.593~1.640)
      ≥6.2 1.097 0.330 11.071 < 0.001 2.996(1.570~5.718)
    家庭人均月收入/元  Household per capita monthly income/yuan
       < 3 000
      3 000~<5 000 0.072 0.234 0.095 0.758 1.075(0.679~1.701)
      5 000~<7 000 -2.482 0.897 7.658 0.006 0.084(0.014~0.485)
      ≥7 000 -1.514 1.092 1.924 0.165 0.220(0.026~1.869)
    注:TC,总胆固醇;SCr,血肌酐;METTL14,甲基转移酶样蛋白14;TGF-β1,转化生长因子-β1。
    Note: TC, total cholesterol; SCr, serum creatinine; METTL14, methyltransferase like 14; TGF-β1, transforming growth factor-β1.
    下载: 导出CSV 
    | 显示表格
    图  4  慢性肾脏病患病风险预测模型列线图和验证
    A:列线图;B:风险预测模型ROC曲线图;C:校准曲线图;D:决策曲线图。
    Figure  4.  Nomogram of risk prediction model of chronic kidney disease and model validation
    A: nomogram; B: ROC curves of risk prediction model; C: calibration curve; D: decision curve analysis.

    使用受试者工作特征(receiver operating characteristic, ROC)曲线和AUC值衡量模型的预测效果,AUC值为0.796(95% CI: 0.752~0.840),见图 4B。校准曲线紧密地靠近45°对角线,在采用Bootstrap法内部重复抽样1 000次进行验证,得到平均绝对误差值为0.036,见图 4C。Hosmer-Lemeshow拟合优度检验χ2值为12.57(P=0.128),预测值与实际观测值间的差异无统计学意义,模型拟合良好。DCA结果显示,在0.04~0.72的阈值概率范围内,该模型提供了可观的净收益,见图 4D

    本研究发现,m6A甲基转移酶METTL14在CKD患者中表达增高,揭示了m6A甲基化调节因子与CKD发病风险的相关性,表明其具有潜在的预测价值。

    相关性研究结果显示,FTO和肾相关指标以及TGF-β1均呈正相关,有研究表明FTO在体内和体外肾纤维化模型中的表达增加[9]。ALKBH5是保护肾纤维化的关键调控基因,可通过恢复ALKBH5调节EMT改善肾纤维化[10],这与本研究中TGF-β1和ALKBH5呈负相关的结果一致。

    使用LASSO筛选潜在预测因子,基于logistic回归分析模型构建列线图,结果显示,男性、TC水平较低和家庭人均月收入较高时,患病风险较低;随着年龄、METTL14、血肌酐升高,患病风险也随之增高。相关研究表明,CKD患病率随着年龄的增长呈上升趋势[11];女性的CKD年龄标准化患病率为男性的1.29倍[3];家庭人均月收入作为社会经济地位的1个重要考量因素,对疾病的发生、发展有着重要影响,收入较高时患病风险较低[12];心血管病是CKD患者死亡和发病的主要原因,与一般人群相比,高脂血症或血脂异常者的患病率更高[13-15],以上研究均与本研究的结论相符。Logistic回归分析模型分析结果显示,当METTL14的表达量每增加10倍,CKD患病风险增加1.886倍,表明METTL14 mRNA相对表达量可能与CKD的发生有密切联系。

    有研究表明,METTL14在钙化动脉和硫酸吲哚酚诱导的人主动脉平滑肌细胞中表达增加[16],而硫酸吲哚酚是1种尿毒症毒素,与CKD患者的心血管病有关[17]。TGF-β1水平升高会促进促纤维化基因的转录和驱动成纤维细胞活化,从而导致疾病的发生、发展[18]。在本研究中,TGF-β1与METTL14呈负相关,可能与研究对象年龄偏大、疾病分期不同有关,logistic回归分析模型分析结果显示,METTL14的表达量增加会加大CKD患病风险,与先前的研究结果一致[16-17]。基于mRNA中m6A修饰的动态调控依赖于相关修饰酶之间的微妙平衡[19],更多关于mRNA甲基化与肾功能不全之间的密切关系还需要进一步探索。开发并验证基于RNA m6A修饰酶的列线图用于CKD患病风险预测,是通过靶向CKD改善目前状况的重要一步,有利于有效管理CKD的危险因素。

    本研究存在一定的局限性:(1)受样本和条件的限制,暂未对CKD患者不同分期进行分析并探讨RNA m6A甲基化及其调节因子在疾病进展中的具体表现,从而限制了研究的深入性和广泛性;(2)纳入研究对象年龄偏大,可能导致研究结果的外推性不足,不能全面反映整个患者群体。

    综上所述,本研究通过对RNA m6A甲基化调节因子在CKD患者中的表达进行分析,发现METTL14、ALKBH5和FTO等因子与CKD相关指标存在相关性,尤其是METTL14的高表达与CKD风险的增加有关。基于多因素logistic回归分析模型构建的CKD患病风险预测模型具有良好的预测能力,提示了m6A甲基化调节因子的潜在预测价值。这一发现为CKD的早期预防提供了新的思路和靶点,未来的研究应进一步探讨其在不同人群和疾病分期中的具体机制,并验证其作为临床干预靶点的作用。

    利益冲突   无

  • 图  1  两组间甲基转移酶和去甲基化酶的相对表达量

    a: 指与对照组相比,差异有统计学意义(Z=-2.410,P=0.016)。

    Figure  1.  Relative expression levels of methylation transferase and demethylase between two groups

    a: refers to a statistically significant difference compared to the control group(Z=-2.410, P < 0.05).

    图  2  m6A甲基化调节因子与TGF-β1及肾功能指标的相关性矩阵散点图

    m6A: RNA N6-甲基腺嘌呤; ALKBH5: 去甲基化酶AlkB同源物5; FTO: 脂肪量和肥胖相关蛋白; METTL3: 甲基转移酶样蛋白3; METTL14: 甲基转移酶样蛋白14; UNAG,β-N-乙酰氨基葡萄糖苷酶; TGF-β1,转化生长因子-β1; SCr,血肌酐; a:P<0.05;b:P<0.01;c:P<0.001。

    Figure  2.  Correlation matrix scatter plot of m6A methylation regulators with TGF-β1 and renal function indices

    m6A: N6-methyladenosine; ALKBH5: human Alk B homolog 5; FTO: fat mass and obesity-associated protein; METTL3: methyltransferase like 3; METTL14: methyltransferase like 14; UNAG, urinary β-N-acetyl-glucosidase; TGF-β1, transforming growth factor-β1; SCr, serum creatinine; a: P < 0.05;b: P < 0.01;c: P < 0.001。

    图  3  基于LASSO回归的特征变量选择

    A:十倍交叉验证图;B:收缩系数图。

    Figure  3.  Predictors selection based on LASSO regression

    A: ten fold cross-validation profile; B: LASSO coefficient profile.

    图  4  慢性肾脏病患病风险预测模型列线图和验证

    A:列线图;B:风险预测模型ROC曲线图;C:校准曲线图;D:决策曲线图。

    Figure  4.  Nomogram of risk prediction model of chronic kidney disease and model validation

    A: nomogram; B: ROC curves of risk prediction model; C: calibration curve; D: decision curve analysis.

    表  1  研究对象的基本特征

    Table  1.   Basic characteristics of study subjects

    变量
    Variable
    对照组
    Control group (n=362)
    病例组
    Case group (n=151)
    χ2/Z
    value
    P
    value
    性别  Gender 17.409 < 0.001
      女性 Female 174(48.1) 103(68.2)
      男性 Male 188(51.9) 48(31.8)
    年龄/岁  Age/years 66(63, 70) 69(65, 75) -4.817 < 0.001
    婚姻状态  Marital status 10.058 0.002
      非在婚(未婚、离异、丧偶等)  Non-marital (unmarried, divorced, widowed, etc) 42(11.6) 34(22.5)
      在婚 In marriage 320(88.4) 117(77.5)
    受教育程度  Educational attainment -2.164 0.030
      小学及以下  Elementary school and below 66(18.2) 34(22.5)
      初中  Junior high school 118(32.6) 57(37.7)
      专科/高中  Junior college/high School 146(40.3) 54(35.8)
      本科及以上  Bachelor′s degree or above 32(8.8) 6(3.9)
    家庭人均月收入/元  Household per capita monthly income/yuan -1.551 0.121
      <3 000 154(42.5) 67(44.4)
      3 000~<5 000 159(43.9) 80(53.0)
      5 000~<7 000 34(9.4) 3(2.0)
      ≥7 000 15(4.1) 1(0.7)
    吸烟  Smoking 1.886 0.170
      否  No 288(79.6) 128(84.8)
      是  Yes 74(20.4) 23(15.2)
    周围人吸烟情况  Smoking by people around you 1.184 0.277
      否  No 280(77.3) 110(72.8)
      是  Yes 82(22.7) 41(27.2)
    饮酒  Drinking 5.221 0.022
      否  No 303(83.7) 138(91.4)
      是 Yes 59(16.3) 13(8.6)
    体育锻炼  Physical activity -1.405 0.160
      每天  Every day 264(72.9) 118(78.1)
      每周3~5次  3-5 times a week 20(5.5) 8(5.3)
      每周≤2次  ≤2 times a week 25(6.9) 12(7.9)
      基本不运动  Basically no exercise 53(14.6) 13(8.6)
    睡眠(自评)  Sleep(self-rated) -0.857 0.392
      好 Good 227(62.7) 100(66.2)
      一般  Not bad 60(16.6) 25(16.6)
      不好  Bad 75(20.7) 26(17.2)
    BMI/(kg·m-2) 6.539 0.011
      <28 278(76.8) 131(86.8)
      ≥28 84(23.2) 20(13.2)
    糖尿病  Diabetes 0.698 0.403
      否  No 290(80.1) 116(76.8)
      是  Yes 72(19.9) 35(23.2)
    高血压  Hypertension 0.134 0.715
      否 No 171(47.2) 74(49.0)
      是  Yes 191(52.8) 77(51.0)
    冠心病  Coronary heart disease 7.481 0.006
      否  No 321(88.7) 120(79.5)
      是  Yes 41(11.3) 31(20.5)
    TC/(mmol·L-1) -0.670 0.503
     <5.2 204(56.4) 84(55.6)
     5.2~<6.2 111(30.7) 38(25.2)
     ≥6.2 47(13.0) 29(19.2)
    TG/(mmol·L-1) -0.492 0.623
      <1.7 209(57.7) 93(61.6)
      1.7~<2.3 82(22.7) 26(17.2)
      ≥2.3 71(19.6) 32(21.2)
    LDL-C/(mmol·L-1) -2.477 0.013
      <3.4 291(80.4) 106(70.2)
      3.4~<4.1 45(12.4) 29(19.2)
      ≥4.1 26(7.2) 16(10.6)
    HDL-C/(mmol·L-1) 2.019 0.155
      <1 21(5.8) 14(9.3)
      ≥1 341(94.2) 137(90.7)
    尿素  Urea/(mmol·L-1) 4.90(4.20, 5.70) 5.45(4.60, 6.30) -3.928 < 0.001
    SCr/(μmol·L-1) 64.80(57.20, 75.00) 83.70(67.70, 92.10) -8.626 < 0.001
    UNAG/(U·g-1Cr) 9.65(4.70, 17.74) 11.44(5.31, 20.50) -0.939 0.348
    TGF-β1/(ng·mL-1) 27.31(13.35, 50.02) 23.57(10.82, 43.75) -1.643 0.100
    注:TC,总胆固醇;TG,三酰甘油;LDL-C,低密度脂蛋白胆固醇;HDL-C,高密度脂蛋白胆固醇;SCr,血肌酐;UNAG,β-N-乙酰氨基葡萄糖苷酶;TGF-β1,转化生长因子-β1。
    ①以人数(占比/%)或M(P25, P75)表示。
    Note: TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; SCr, serum creatinine; UNAG, urinary β-N-acetyl-glucosidase; TGF-β1, transforming growth factor-β1.
    ① Number of people (proportion/%) or M(P25, P75).
    下载: 导出CSV

    表  2  慢性肾脏病患病风险的多因素logistic回归分析

    Table  2.   Multivariate logistic regression model of chronic kidney disease risk

    变量
    Variable
    β
    value
    sx
    value
    Wald值  value P
    value
    OR值  value (95% CI)
    性别  Gender -0.689 0.238 8.346 0.004 0.502(0.315~0.801)
    年龄/岁  Age/years 0.059 0.015 15.134 < 0.001 1.061(1.030~1.093)
    肥胖  Obesity -0.481 0.298 2.596 0.107 0.618(0.345~1.110)
    SCr/(μmol·L-1) 0.038 0.006 34.334 < 0.001 1.039(1.026~1.052)
    lg(METTL14) 0.635 0.266 5.698 0.017 1.886(1.120~3.176)
    TGF-β1/(ng·mL-1) -0.006 0.005 2.584 0.108 0.994(0.987~1.001)
    TC/(mmol·L-1)
       < 5.2
      5.2~<6.2 -0.014 0.260 0.003 0.956 0.986(0.593~1.640)
      ≥6.2 1.097 0.330 11.071 < 0.001 2.996(1.570~5.718)
    家庭人均月收入/元  Household per capita monthly income/yuan
       < 3 000
      3 000~<5 000 0.072 0.234 0.095 0.758 1.075(0.679~1.701)
      5 000~<7 000 -2.482 0.897 7.658 0.006 0.084(0.014~0.485)
      ≥7 000 -1.514 1.092 1.924 0.165 0.220(0.026~1.869)
    注:TC,总胆固醇;SCr,血肌酐;METTL14,甲基转移酶样蛋白14;TGF-β1,转化生长因子-β1。
    Note: TC, total cholesterol; SCr, serum creatinine; METTL14, methyltransferase like 14; TGF-β1, transforming growth factor-β1.
    下载: 导出CSV
  • [1] Liang S, Wu YS, Li DY, et al. Autophagy and renal fibrosis [J]. Aging Dis, 2022, 13(3): 712-731. DOI: 10.14336/AD.2021.1027.
    [2] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis [J]. Chem Biol Interact, 2018, 292: 76-83. DOI: 10.1016/j.cbi.2018.07.008.
    [3] GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the global burden of disease study 2017 [J]. Lancet, 2020, 395(10225): 709-733. DOI: 10.1016/S0140-6736(20)30045-3.
    [4] Jung HR, Lee J, Hong SP, et al. Targeting the m6A RNA methyltransferase METTL3 attenuates the development of kidney fibrosis [J]. Exp Mol Med, 2024, 56: 355-369. DOI: 10.1038/s12276-024-01159-5.
    [5] Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation [J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. DOI: 10.1038/s41580-019-0168-5.
    [6] Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism [J]. Cell Res, 2018, 28(6): 616-624. DOI: 10.1038/s41422-018-0040-8.
    [7] Foundation NK. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification [J]. Am J Kidney Dis, 2002, 39(2 Suppl 1): S1-S266.
    [8] Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate [J]. Ann Intern Med, 2009, 150(9): 604-612. DOI: 10.7326/0003-4819-150-9-200905050-00006.
    [9] Wang DX, Bao SY, Song NN, et al. FTO-mediated m6A mRNA demethylation aggravates renal fibrosis by targeting RUNX1 and further enhancing PI3K/AKT pathway [J]. FASEB J, 2024, 38(5): e23436. DOI: 10.1096/fj.202302041R.
    [10] Ning YC, Chen J, Shi YQ, et al. Genistein ameliorates renal fibrosis through regulation snail via m6A RNA demethylase ALKBH5 [J]. Front Pharmacol, 2020, 11: 579265. DOI: 10.3389/fphar.2020.579265.
    [11] Ortiz A, Mattace-Raso F, Soler MJ, et al. Ageing meets kidney disease [J]. Nephrol Dial Transplant, 2023, 38(3): 523-526. DOI: 10.1093/ndt/gfac199.
    [12] Taktak Ş, Öz HS. The relationship between depression, anxiety and stress levels on suicidal behavior in patients with schizophrenia [J]. Psychiatry Clin Psychopharmacol, 2023, 33(2): 108-116. DOI: 10.5152/pcp.2023.22606.
    [13] Zhai Q, Dou JT, Wen J, et al. Association between changes in lipid indexes and early progression of kidney dysfunction in participants with normal estimated glomerular filtration rate: a prospective cohort study [J]. Endocrine, 2022, 76(2): 312-323. DOI: 10.1007/s12020-022-03012-z.
    [14] Luyckx VA, Cherney DZI, Bello AK. Preventing CKD in developed countries [J]. Kidney Int Rep, 2019, 5(3): 263-277. DOI: 10.1016/j.ekir.2019.12.003.
    [15] Baek HS, Park MJ, Song JY, et al. Association between serum total cholesterol and chronic kidney disease progression in children: results from the KNOW-PedCKD [J]. Pediatr Nephrol, 2023, 38(12): 4101-4109. DOI: 10.1007/s00467-023-06033-6.
    [16] Chen J, Ning YC, Zhang H, et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate [J]. Life Sci, 2019, 239: 117034. DOI: 10.1016/j.lfs.2019.117034.
    [17] Stubbs JR, House JA, Ocque AJ, et al. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden [J]. J Am Soc Nephrol, 2016, 27(1): 305-313. DOI: 10.1681/ASN.2014111063.
    [18] Higgins SP, Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis [J]. Cell Signal, 2018, 43: 1-10. DOI: 10.1016/j.cellsig.2017.11.005.
    [19] Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation [J]. Cell, 2017, 169(7): 1187-1200. DOI: 10.1016/j.cell.2017.05.045.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  74
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-22
  • 修回日期:  2024-10-15
  • 网络出版日期:  2024-12-23
  • 刊出日期:  2024-11-10

目录

/

返回文章
返回