-
摘要:
目的 为了解成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)检测技术应用于核酸现场即时检测的研究现状。 方法 以“CRISPR”“nucleic acid detection”“point-of-care testing”或“POCT”为关键词,系统检索公开发表在PubMed、BioRxiv和MedRxiv数据库中的相关文献。 结果 根据纳入、排除标准,共纳入17篇文献,汇总分析CRISPR相关蛋白(CRISPR-associated protein, Cas)酶扩增方法、灵敏度、特异性、检测时间等方面信息。本研究结果显示,结合环介导等温扩增(loop-mediated isothermal amplification, LAMP)或重组酶聚合酶扩增(recombinase polymerase amplification, RPA)等核酸扩增方法后,CRISPR检测技术的灵敏度与实时荧光定量聚合酶反应(real time quantitative polymerase chain reaction, RT-qPCR)相当。 结论 CRISPR检测过程在30~100 min即可完成,检测结果可肉眼读取,且检测成本与抗原检测相当,适用于资源匮乏地区进行大规模的核酸现场即时检测。 -
关键词:
- 成簇规律间隔短回文重复序列 /
- 核酸检测 /
- 即时检测
Abstract:Objective To understand the current research status of clustered regularly interspaced short palindromic repeats (CRISPR) applied to nucleic acid detection. Methods In this study, we systematically reviewed related literatures published on databases of PubMed, BioRxiv, and MedRxiv using the keywords "CRISPR", "nucleic acid detection", "point-of-care testing" or "POCT". Results According to the inclusion and exclusion criteria, a total of 17 publications were selected. We summarized and analyzed the information of CRISPR-associated protein, amplification method, sensitivity, specificity, detection time and other aspects. Results suggested that when combined with nucleic acid amplification methods, such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA), the sensitivity of CRISPR was comparable to real time quantitative polymerase chain reaction (RT-qPCR). Conclusions The process of CRISPR can be completed within 30 to 100 minutes, with results that can be read by the naked eye. Additionally, the cost of detection is comparable to the antigen test, making it particularly suitable for large-scale point-of-care (POC) nucleic acid detection in resource limited areas. -
表 1 纳入文献的基本信息
Table 1. Basic information of the included publications
第一作者
First author发表年份
Publication year国家
Country标本
Specimen病原体
Pathogen扩增方法
Amplification methodCas酶
CRISPR-associated protein时间
Time/minAgrawal[5] 2021 美国
United States唾液
SalivaSARS-CoV-2 LAMP Cas13 35 Brandsma[6] 2021 荷兰
Netherlands鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 LAMP Cas12 30 Abugattas-Núñez[7] 2024 秘鲁
Peru唾液
SalivaSARS-CoV-2 LAMP Cas12a 40 Jirawannaporn[8] 2022 泰国
Thailand血清
Serum钩端螺旋体
LeptospiraRPA Cas12a 60 Ding[9] 2021 中国
China血清
Serum乙型肝炎病毒
Hepatitis B virusLAMP Cas12 30 ~60 Qian[10] 2021 中国
China― 诺如病毒
NorovirusRPA Cas12a 40 Feng[11] 2021 中国
China鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 RPA Cas12a 30 Wang[12] 2021 中国
China鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 LAMP Cas12a 45 Casati[13] 2022 德国
Germany鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 RPA Cas13 60 Kham-Kjing[14] 2022 泰国
Thailand血浆
Plasma丙型肝炎病毒
Hepatitis C virusLAMP Cas12 60 ~90 Patchsung[15] 2023 泰国
Thailand鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 RPA Cas13 60 Lu[16] 2022 中国
China鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 RPA Cas12a 20 Bhatt[17] 2022 印度
India鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 LAMP Cas12 < 100 Ali[18] 2022 沙特阿拉伯
Saudi Arabia鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 RPA Cas9 < 60 Arizti-Sanz[19] 2022 美国
United States鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 RPA Cas13 < 90 Figueiredo[20] 2023 葡萄牙
Portugal鼻咽拭子
Nasopharyngeal swabSARS-CoV-2 LAMP Cas12a 40 Zhou[21] 2023 中国
China拭子
Swab禽流感病毒
Avian influenza virusRPA Cas12a 60 注:1. SARS-CoV-2,严重急性呼吸综合征冠状病毒2型;LAMP,环介导等温扩增;RPA,重组酶聚合酶扩增。
2. “―”表示无法获取。
Note: 1. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; LAMP, loop-mediated isothermal amplification; RPA, recombinase polymerase amplification.
2. "―" indicates that it cannot be obtained. -
[1] Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336): 438-442. DOI: 10.1126/science.aam9321. [2] Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases [J]. Nat Protoc, 2019, 14(10): 2986-3012. DOI: 10.1038/s41596-019-0210-2. [3] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [J]. Nature, 2020, 579: 270-273. DOI: 10.1038/s41586-020-2012-7. [4] Wu J, Li J, Zhu G, et al. Clinical features of maintenance hemodialysis patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China [J]. Clin J Am Soc Nephrol, 2020, 15(8): 1139-1145. DOI: 10.2215/CJN.04160320. [5] Agrawal S, Fanton A, Chandrasekaran SS, et al. Rapid, point-of-care molecular diagnostics with Cas13 [J]. medRxiv, 2021: 2020.12.14.20247874. DOI: 10.1101/2020.12.14.20247874. [6] Brandsma E, Verhagen HJMP, van de Laar TJW, et al. Rapid, sensitive, and specific severe acute respiratory syndrome coronavirus 2 detection: a multicenter comparison between standard quantitative reverse-transcriptase polymerase chain reaction and CRISPR-based DETECTR [J]. J Infect Dis, 2021, 223(2): 206-213. DOI: 10.1093/infdis/jiaa641. [7] Abugattas-Núñez Del Prado J, Quintana Reyes A, Leon J, et al. Clinical validation of RCSMS: a rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva [J]. PLoS One, 2024, 19(3): e0290466. DOI: 10.1371/journal.pone.0290466. [8] Jirawannaporn S, Limothai U, Tachaboon S, et al. Rapid and sensitive point-of-care detection of Leptospira by RPA-CRISPR/Cas12a targeting lipL32 [J]. PLoS Negl Trop Dis, 2022, 16(1): e0010112. DOI: 10.1371/journal.pntd.0010112. [9] Ding RH, Long JZ, Yuan MZ, et al. CRISPR/Cas12-based ultra-sensitive and specific point-of-care detection of HBV [J]. Int J Mol Sci, 2021, 22(9): 4842. DOI: 10.3390/ijms22094842. [10] Qian WD, Huang J, Wang XF, et al. CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII. 4 [J]. Virology, 2021, 564: 26-32. DOI: 10.1016/j.virol.2021.09.008. [11] Feng W, Peng HY, Xu JY, et al. Integrating reverse transcription recombinase polymerase amplification with CRISPR technology for the one-tube assay of RNA [J]. Anal Chem, 2021, 93(37): 12808-12816. DOI: 10.1021/acs.analchem.1c03456. [12] Wang R, Qian CY, Pang YN, et al. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection [J]. Biosens Bioelectron, 2021, 172: 112766. DOI: 10.1016/j.bios.2020.112766. [13] Casati B, Verdi JP, Hempelmann A, et al. Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO [J]. Nat Commun, 2022, 13(1): 3308. DOI: 10.1038/s41467-022-30862-y. [14] Kham-Kjing N, Ngo-Giang-Huong N, Tragoolpua K, et al. Highly specific and rapid detection of hepatitis C virus using RT-LAMP-coupled CRISPR-Cas12 assay [J]. Diagnostics, 2022, 12(7): 1524. DOI: 10.3390/diagnostics12071524. [15] Patchsung M, Homchan A, Aphicho K, et al. A multiplexed Cas13-based assay with point-of-care attributes for simultaneous COVID-19 diagnosis and variant surveillance [J]. CRISPR J, 2023, 6(2): 99-115. DOI: 10.1089/crispr.2022.0048. [16] Lu SH, Tong XH, Han Y, et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a [J]. Nat Biomed Eng, 2022, 6(3): 286-297. DOI: 10.1038/s41551-022-00861-x. [17] Bhatt A, Fatima Z, Ruwali M, et al. CLEVER assay: a visual and rapid RNA extraction-free detection of SARS-CoV-2 based on CRISPR-Cas integrated RT-LAMP technology [J]. J Appl Microbiol, 2022, 133(2): 410-421. DOI: 10.1111/jam.15571. [18] Ali Z, Sánchez E, Tehseen M, et al. Bio-SCAN: a CRISPR/dCas9-based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2 [J]. ACS Synth Biol, 2022, 11(1): 406-419. DOI: 10.1021/acssynbio.1c00499. [19] Arizti-Sanz J, Bradley A, Zhang YB, et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants [J]. Nat Biomed Eng, 2022, 6(8): 932-943. DOI: 10.1038/s41551-022-00889-z. [20] Figueiredo D, Cascalheira A, Goncalves J. Rapid, multiplex detection of SARS-CoV-2 using isothermal amplification coupled with CRISPR-Cas12a [J]. Sci Rep, 2023, 13(1): 849. DOI: 10.1038/s41598-022-27133-7. [21] Zhou X, Wang SW, Ma Y, et al. Rapid detection of avian influenza virus based on CRISPR-Cas12a [J]. Virol J, 2023, 20(1): 261. DOI: 10.1186/s12985-023-02232-7. [22] Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13 [J]. Science, 2018, 360(6387): 444-448. DOI: 10.1126/science.aas8836. [23] Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387): 436-439. DOI: 10.1126/science.aar6245. [24] Fozouni P, Son S, de León Derby MD, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy [J]. Cell, 2021, 184(2): 323-333. e9. DOI: 10.1016/j.cell.2020.12.001. [25] Nagai K, Horita N, Yamamoto M, et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis [J]. Sci Rep, 2016, 6: 39090. DOI: 10.1038/srep39090. [26] Patchsung M, Jantarug K, Pattama A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA [J]. Nat Biomed Eng, 2020, 4(12): 1140-1149. DOI: 10.1038/s41551-020-00603-x.