• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CRISPR检测技术应用于核酸现场即时检测系统综述

王雪琪 何纳

王雪琪, 何纳. CRISPR检测技术应用于核酸现场即时检测系统综述[J]. 中华疾病控制杂志, 2024, 28(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2024.11.016
引用本文: 王雪琪, 何纳. CRISPR检测技术应用于核酸现场即时检测系统综述[J]. 中华疾病控制杂志, 2024, 28(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2024.11.016
WANG Xueqi, HE Na. Systematic review of CRISPR applied to point-of-care nucleic acid detection[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2024.11.016
Citation: WANG Xueqi, HE Na. Systematic review of CRISPR applied to point-of-care nucleic acid detection[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2024.11.016

CRISPR检测技术应用于核酸现场即时检测系统综述

doi: 10.16462/j.cnki.zhjbkz.2024.11.016
基金项目: 

国家重点研发计划项目 2022YFC2304902

上海市加强公共卫生体系建设三年行动计划重点学科建设项目 GWVI-11.1-05

详细信息
    通讯作者:

    何纳,E-mail: nhe@fudan.edu.cn

  • 中图分类号: R183

Systematic review of CRISPR applied to point-of-care nucleic acid detection

Funds: 

National Key Research and Development Program of China 2022YFC2304902

Key Disciplinary Program of Shanghai Public Health Action Plan GWVI-11.1-05

More Information
  • 摘要:   目的  为了解成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)检测技术应用于核酸现场即时检测的研究现状。  方法  以“CRISPR”“nucleic acid detection”“point-of-care testing”或“POCT”为关键词,系统检索公开发表在PubMed、BioRxiv和MedRxiv数据库中的相关文献。  结果  根据纳入、排除标准,共纳入17篇文献,汇总分析CRISPR相关蛋白(CRISPR-associated protein, Cas)酶扩增方法、灵敏度、特异性、检测时间等方面信息。本研究结果显示,结合环介导等温扩增(loop-mediated isothermal amplification, LAMP)或重组酶聚合酶扩增(recombinase polymerase amplification, RPA)等核酸扩增方法后,CRISPR检测技术的灵敏度与实时荧光定量聚合酶反应(real time quantitative polymerase chain reaction, RT-qPCR)相当。  结论  CRISPR检测过程在30~100 min即可完成,检测结果可肉眼读取,且检测成本与抗原检测相当,适用于资源匮乏地区进行大规模的核酸现场即时检测。
  • 图  1  文献筛选流程图

    Figure  1.  Literature screening flowchart

    图  2  纳入文献的灵敏度和特异度森林图

    Figure  2.  Forest plots of sensitivity and specificity for included studies

    表  1  纳入文献的基本信息

    Table  1.   Basic information of the included publications

    第一作者
    First author
    发表年份
    Publication year
    国家
    Country
    标本
    Specimen
    病原体
    Pathogen
    扩增方法
    Amplification method
    Cas酶
    CRISPR-associated protein
    时间
    Time/min
    Agrawal[5] 2021 美国
    United States
    唾液
    Saliva
    SARS-CoV-2 LAMP Cas13 35
    Brandsma[6] 2021 荷兰
    Netherlands
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 LAMP Cas12 30
    Abugattas-Núñez[7] 2024 秘鲁
    Peru
    唾液
    Saliva
    SARS-CoV-2 LAMP Cas12a 40
    Jirawannaporn[8] 2022 泰国
    Thailand
    血清
    Serum
    钩端螺旋体
    Leptospira
    RPA Cas12a 60
    Ding[9] 2021 中国
    China
    血清
    Serum
    乙型肝炎病毒
    Hepatitis B virus
    LAMP Cas12 30 ~60
    Qian[10] 2021 中国
    China
    诺如病毒
    Norovirus
    RPA Cas12a 40
    Feng[11] 2021 中国
    China
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 RPA Cas12a 30
    Wang[12] 2021 中国
    China
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 LAMP Cas12a 45
    Casati[13] 2022 德国
    Germany
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 RPA Cas13 60
    Kham-Kjing[14] 2022 泰国
    Thailand
    血浆
    Plasma
    丙型肝炎病毒
    Hepatitis C virus
    LAMP Cas12 60 ~90
    Patchsung[15] 2023 泰国
    Thailand
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 RPA Cas13 60
    Lu[16] 2022 中国
    China
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 RPA Cas12a 20
    Bhatt[17] 2022 印度
    India
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 LAMP Cas12 < 100
    Ali[18] 2022 沙特阿拉伯
    Saudi Arabia
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 RPA Cas9 < 60
    Arizti-Sanz[19] 2022 美国
    United States
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 RPA Cas13 < 90
    Figueiredo[20] 2023 葡萄牙
    Portugal
    鼻咽拭子
    Nasopharyngeal swab
    SARS-CoV-2 LAMP Cas12a 40
    Zhou[21] 2023 中国
    China
    拭子
    Swab
    禽流感病毒
    Avian influenza virus
    RPA Cas12a 60
    注:1. SARS-CoV-2,严重急性呼吸综合征冠状病毒2型;LAMP,环介导等温扩增;RPA,重组酶聚合酶扩增。
    2. “―”表示无法获取。
    Note: 1. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; LAMP, loop-mediated isothermal amplification; RPA, recombinase polymerase amplification.
    2. "―" indicates that it cannot be obtained.
    下载: 导出CSV
  • [1] Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336): 438-442. DOI: 10.1126/science.aam9321.
    [2] Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases [J]. Nat Protoc, 2019, 14(10): 2986-3012. DOI: 10.1038/s41596-019-0210-2.
    [3] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [J]. Nature, 2020, 579: 270-273. DOI: 10.1038/s41586-020-2012-7.
    [4] Wu J, Li J, Zhu G, et al. Clinical features of maintenance hemodialysis patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China [J]. Clin J Am Soc Nephrol, 2020, 15(8): 1139-1145. DOI: 10.2215/CJN.04160320.
    [5] Agrawal S, Fanton A, Chandrasekaran SS, et al. Rapid, point-of-care molecular diagnostics with Cas13 [J]. medRxiv, 2021: 2020.12.14.20247874. DOI: 10.1101/2020.12.14.20247874.
    [6] Brandsma E, Verhagen HJMP, van de Laar TJW, et al. Rapid, sensitive, and specific severe acute respiratory syndrome coronavirus 2 detection: a multicenter comparison between standard quantitative reverse-transcriptase polymerase chain reaction and CRISPR-based DETECTR [J]. J Infect Dis, 2021, 223(2): 206-213. DOI: 10.1093/infdis/jiaa641.
    [7] Abugattas-Núñez Del Prado J, Quintana Reyes A, Leon J, et al. Clinical validation of RCSMS: a rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva [J]. PLoS One, 2024, 19(3): e0290466. DOI: 10.1371/journal.pone.0290466.
    [8] Jirawannaporn S, Limothai U, Tachaboon S, et al. Rapid and sensitive point-of-care detection of Leptospira by RPA-CRISPR/Cas12a targeting lipL32 [J]. PLoS Negl Trop Dis, 2022, 16(1): e0010112. DOI: 10.1371/journal.pntd.0010112.
    [9] Ding RH, Long JZ, Yuan MZ, et al. CRISPR/Cas12-based ultra-sensitive and specific point-of-care detection of HBV [J]. Int J Mol Sci, 2021, 22(9): 4842. DOI: 10.3390/ijms22094842.
    [10] Qian WD, Huang J, Wang XF, et al. CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII. 4 [J]. Virology, 2021, 564: 26-32. DOI: 10.1016/j.virol.2021.09.008.
    [11] Feng W, Peng HY, Xu JY, et al. Integrating reverse transcription recombinase polymerase amplification with CRISPR technology for the one-tube assay of RNA [J]. Anal Chem, 2021, 93(37): 12808-12816. DOI: 10.1021/acs.analchem.1c03456.
    [12] Wang R, Qian CY, Pang YN, et al. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection [J]. Biosens Bioelectron, 2021, 172: 112766. DOI: 10.1016/j.bios.2020.112766.
    [13] Casati B, Verdi JP, Hempelmann A, et al. Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO [J]. Nat Commun, 2022, 13(1): 3308. DOI: 10.1038/s41467-022-30862-y.
    [14] Kham-Kjing N, Ngo-Giang-Huong N, Tragoolpua K, et al. Highly specific and rapid detection of hepatitis C virus using RT-LAMP-coupled CRISPR-Cas12 assay [J]. Diagnostics, 2022, 12(7): 1524. DOI: 10.3390/diagnostics12071524.
    [15] Patchsung M, Homchan A, Aphicho K, et al. A multiplexed Cas13-based assay with point-of-care attributes for simultaneous COVID-19 diagnosis and variant surveillance [J]. CRISPR J, 2023, 6(2): 99-115. DOI: 10.1089/crispr.2022.0048.
    [16] Lu SH, Tong XH, Han Y, et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a [J]. Nat Biomed Eng, 2022, 6(3): 286-297. DOI: 10.1038/s41551-022-00861-x.
    [17] Bhatt A, Fatima Z, Ruwali M, et al. CLEVER assay: a visual and rapid RNA extraction-free detection of SARS-CoV-2 based on CRISPR-Cas integrated RT-LAMP technology [J]. J Appl Microbiol, 2022, 133(2): 410-421. DOI: 10.1111/jam.15571.
    [18] Ali Z, Sánchez E, Tehseen M, et al. Bio-SCAN: a CRISPR/dCas9-based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2 [J]. ACS Synth Biol, 2022, 11(1): 406-419. DOI: 10.1021/acssynbio.1c00499.
    [19] Arizti-Sanz J, Bradley A, Zhang YB, et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants [J]. Nat Biomed Eng, 2022, 6(8): 932-943. DOI: 10.1038/s41551-022-00889-z.
    [20] Figueiredo D, Cascalheira A, Goncalves J. Rapid, multiplex detection of SARS-CoV-2 using isothermal amplification coupled with CRISPR-Cas12a [J]. Sci Rep, 2023, 13(1): 849. DOI: 10.1038/s41598-022-27133-7.
    [21] Zhou X, Wang SW, Ma Y, et al. Rapid detection of avian influenza virus based on CRISPR-Cas12a [J]. Virol J, 2023, 20(1): 261. DOI: 10.1186/s12985-023-02232-7.
    [22] Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13 [J]. Science, 2018, 360(6387): 444-448. DOI: 10.1126/science.aas8836.
    [23] Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387): 436-439. DOI: 10.1126/science.aar6245.
    [24] Fozouni P, Son S, de León Derby MD, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy [J]. Cell, 2021, 184(2): 323-333. e9. DOI: 10.1016/j.cell.2020.12.001.
    [25] Nagai K, Horita N, Yamamoto M, et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis [J]. Sci Rep, 2016, 6: 39090. DOI: 10.1038/srep39090.
    [26] Patchsung M, Jantarug K, Pattama A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA [J]. Nat Biomed Eng, 2020, 4(12): 1140-1149. DOI: 10.1038/s41551-020-00603-x.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  35
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-08-19
  • 网络出版日期:  2024-12-23
  • 刊出日期:  2024-11-10

目录

    /

    返回文章
    返回