Investigation and association analysis of multimorbidity in middle-aged and elderly population in China
-
摘要:
目的 利用关联规则研究我国中老年人群慢性病共病模式,探索慢性病间的关联性和关联强度。 方法 采用中国健康与养老追踪调查(China health and retirement longitudinal study,CHARLS)2015年的数据,纳入我国9省市45岁以上中老年人患14种慢性病情况,利用R 3.4.3软件中的Apriori算法对数据进行分析,挖掘慢性病共病情况。 结果 17 796名调查对象中,至少患有一种慢性病人数为12 245(68.81%),同时患有两种及以上慢性病的人数为7 321(41.15%)。在筛选出的关联规则中,按照支持度排序,最常见的三种慢性病共病模式为血脂异常和心脏病、糖尿病和血脂异常、哮喘和慢性肺部疾病,规则支持度分别为6.77%、5.27%、4.28%,规则置信度分别为34.38%、43.14%、70.81%。关联规则结果多项指向心脏病、血脂异常、慢性肺部疾病。75岁以上年龄组强关联规则最多。 结论 心脏病存在于多种共病模式中,应加强对其的筛查与预防。血脂异常与糖尿病、高血压具有强关联性,且男性患者更易共患血脂异常。随着年龄增长,慢性病共患更普遍更复杂。 Abstract:Objective To characterize the multimorbidity patterns of chronic diseases in middle-aged and elderly people in China, and explore the correlation and intensity among chronic diseases by using association rules. Methods A total of 17 796 people over 45 years old from 9 provinces and cities in China were sampled and surveyed. The data were analyzed by Apriori algorithm in R3.4.3 software to investigate the multimorbidity of chronic diseases. Results Among total 17 796 respondents, the number of patients with at least one chronic disease was 12 245 (68.81%), and the number of patients with two or more chronic diseases was 7 321 (41.15%). Among the selected association rules, according to the ranking of support degree, the most common three chronic disease multimorbidities were dyslipidemia and heart disease, diabetes mellitus and dyslipidemia, asthma and chronic lung disease. The rule support was 6.77%, 5.27%, 4.28%, and the rule confidence was 34.38%, 43.14%, and 70.81%, respectively. Multiple results of association rules pointed to heart disease. After screening, the greatest association rules were found in the age group over 75 years old. Conclusions Heart disease exists in a variety of chronic disease multimorbidity patterns. Screening and prevention measures should be strengthened. Dyslipidemia is strongly associated with diabetes and hypertension, and male patients are more vulnerable to suffer from dyslipidemia. Chronic diseases intend to be more common and complicated along with age increase. -
Key words:
- Chronic diseases /
- Multimorbidity /
- Association rules
-
表 1 调查对象基本情况[n(%)]
Table 1. Basic information of respondents[n(%)]
分类 患病 未患病 总人数 χ2值 P值 性别 46.985 < 0.001 男 5 758(66.37) 2 918(33.63) 8 676(48.75) 女 6 487(71.13) 2 633(28.87) 9 120(51.25) 年龄(岁) 571.695 < 0.001 45~ 4 938(59.94) 3 300(40.06) 8 238(46.29) 60~ 5 526(75.67) 1 777(24.33) 7 303(41.04) 75~ 1 663(79.27) 435(20.73) 2 098(11.79) ≥90 118(75.16) 39(24.84) 157(0.88) 居住地 0.323 0.570 城镇 1 614(68.30) 749(31.70) 2 363(13.28) 农村 10 631(68.88) 4 802(31.12) 15 433(86.72) 表 2 慢性病共病关联分析结果
Table 2. Results of association rules for multimorbidity
前项 后项 支持度(%) 置信度(%) 提升度 共患两种慢性病 血脂异常 心脏病 6.77 34.38 1.69 糖尿病 血脂异常 5.27 43.14 2.19 哮喘 慢性肺部疾病 4.28 70.81 4.86 肾脏疾病 心脏病 3.11 33.96 1.67 肾脏疾病 高血压 2.66 70.41 1.65 哮喘 心脏病 1.98 32.84 1.61 肝脏疾病 心脏病 1.72 30.54 1.50 肝脏疾病 慢性肺部疾病 1.33 23.59 1.62 肾脏疾病 血脂异常 1.26 33.26 1.69 肝脏疾病 肾脏疾病 1.20 21.27 2.32 记忆相关疾病 心脏病 1.16 36.69 1.80 共患三种慢性病 高血压, 糖尿病 血脂异常 3.94 56.49 2.87 糖尿病, 心脏病 血脂异常 2.16 58.54 2.97 关节炎或风湿, 哮喘 慢性肺部疾病 2.10 70.99 4.87 高血压, 哮喘 慢性肺部疾病 1.73 70.90 4.87 胃及消化系统疾病, 哮喘 慢性肺部疾病 1.55 76.00 5.22 心脏病, 哮喘 慢性肺部疾病 1.54 77.37 5.31 血脂异常, 肾脏疾病 心脏病 1.22 54.98 2.70 慢性肺部疾病, 肾脏疾病 心脏病 1.02 53.65 2.64 表 3 不同性别慢性病关联规则结果
Table 3. Results of association rules for chronic diseases of different genders
性别 前项 后项 支持度(%) 置信度(%) 提升度 女 哮喘 慢性肺部疾病 5.59 76.30 4.39 高血压, 糖尿病 血脂异常 3.94 60.21 3.04 关节炎或风湿, 哮喘 慢性肺部疾病 2.28 75.72 4.36 高血压, 哮喘 慢性肺部疾病 2.19 72.83 4.19 高血压, 糖尿病, 心脏病 血脂异常 1.53 67.69 3.41 高血压, 血脂异常, 胃及消化系统疾病 心脏病 1.22 51.85 3.07 高血压, 关节炎或风湿, 哮喘 慢性肺部疾病 1.02 71.95 4.14 男 高血压, 糖尿病 血脂异常 3.95 53.56 2.74 哮喘 慢性肺部疾病 3.11 63.52 5.26 糖尿病, 心脏病 血脂异常 2.33 55.51 2.84 高血压, 血脂异常, 胃及消化疾病 心脏病 2.11 60.35 2.58 高血压, 糖尿病, 心脏病 血脂异常 1.99 64.18 3.28 高血压, 糖尿病, 关节炎或风湿 血脂异常 1.90 56.42 2.88 高血压, 糖尿病, 胃及消化疾病 血脂异常 1.23 58.82 3.01 糖尿病, 心脏病, 关节炎或风湿 血脂异常 1.14 56.92 2.91 心脏病, 关节炎或风湿, 哮喘 慢性肺部疾病 1.06 78.41 6.50 胃及消化疾病, 关节炎或风湿, 哮喘 慢性肺部疾病 1.05 75.56 6.26 表 4 不同年龄慢性病关联规则结果
Table 4. Result of association rules for chronic diseases of different ages
年龄(岁) 前项 后项 支持度(%) 置信度(%) 提升度 45~ 糖尿病 血脂异常 4.43 43.11 2.19 高血压, 心脏病 血脂异常 3.44 45.58 2.31 60~ 糖尿病 血脂异常 6.28 44.95 2.14 高血压, 心脏病 血脂异常 5.88 44.40 2.12 高血压, 糖尿病 血脂异常 4.81 56.36 2.69 哮喘 慢性肺部疾病 4.71 72.02 4.72 血脂异常, 胃及消化系统疾病 心脏病 3.06 49.42 2.17 ≥75 哮喘 慢性肺部疾病 5.42 63.95 3.56 高血压, 血脂异常 心脏病 5.24 49.46 2.02 糖尿病 血脂异常 4.38 40.43 2.40 慢性肺部疾病, 胃及消化系统疾病 心脏病 3.57 50.82 2.07 关节炎或风湿, 哮喘 慢性肺部疾病 3.40 65.56 3.65 高血压, 糖尿病 血脂异常 3.29 47.50 2.82 血脂异常, 胃及消化系统疾病 心脏病 3.11 56.84 2.32 -
[1] Zemedikun DT, Gray LJ, Khunti K, et al. Patterns of multimorbidity in middle-aged and older adults: an analysis of the UK biobank data[J]. Mayo Clin Proc, 2018, 93(7): 857-866. DOI: 10.1016/j.mayocp.2018.02.012. [2] 吴玉韶, 党俊武. 中国老龄事业发展报告(2013)[M]. 社会科学文献出版社, 2013: 1-274.Wu YS, Dang JW. Blue book of aging: China report of the development on aging cause[M]. Beijing: Social Sciences Academic Press, 2013: 1-274. [3] Wang XQ, Chen PJ. Population ageing challenges health care in China[J]. Lancet, 2014, 383(9920): 870. DOI: 10.1016/S0140-6736(14)60443-8. [4] 陈大方. 慢性非传染性疾病分子流行病学研究现状与展望[J]. 中国慢性病预防与控制, 2016, 24(2): 81-83. DOI: 10.16386/j.cjpccd.issn.1004-6194.2016.02.001.Chen DF. Current situation and prospect of molecular epidemiology of chronic non-communicable diseases[J]. Clin J Prevent Control Chronic Dis, 2016, 24(2): 81-83. DOI: 10.16386/j.cjpccd.issn.1004-6194.2016.02.001. [5] Alwan A. Global status report on noncommunicable diseases 2010[M]. Geneva: World Health Organization, 2011: 1-176. [6] Fortin M, Bravo G, Hudon C, et al. Prevalence of multimorbidity among adults seen in family practice[J]. Ann Fam Med, 2005, 3(3): 223-228. DOI: 10.1370/afm.272. [7] Koroukian SM, Warner DF, Owusu C, et al. Multimorbidity redefined: prospective health outcomes and the cumulative effect of co-occurring conditions[J]. Prev Chronic Dis, 2015, 12: E55. DOI: 10.5888/pcd12.140478. [8] World Health Organization. The world health report 2008: primary health care-now more than ever[M]. Geneva: World Health Organization, 2008: 1-109. [9] Arokiasamy P, Uttamacharya U, Jain K, et al. The impact of multimorbidity on adult physical and mental health in low and middle-income countries: what does the study on global ageing and adult health (SAGE) reveal?[J]. BMC Med, 2015, 13(1): 178. DOI: 10.1186/s12916-015-0402-8. [10] Bahler C, Huber CA, Brungger B, et al. Multimorbidity, health care utilization and costs in an elderly communitydwelling population: a claims data based observational study[J]. BMC Health Serv Res, 2015, 15(1): 23. DOI: 10.1186/s12913-015-0698-2. [11] Fortin M, Dubois MF, Hudon C, et al. Multimorbidity and quality of life: a closer look[J]. Health Qual Life Outcomes, 2007, 5(1): 52. DOI: 10.1186/1477-7525-5-52. [12] Zhao Y, Hu Y, Smith JP, et al. Cohort profile: the China health and retirement longitudinal study(CHARLS)[J]. Int J Epidemiol, 2014, 43(1): 61-68. DOI: 10.1093/ije/dys203. [13] 任仙龙, 胡冬梅, 王文娟, 等. 关联规则在社区居民慢性病患病率分析中的应用[J]. 中国卫生统计, 2013, 30(6): 818-820. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201306011.htmRen XL, Hu DM, Wang WJ, et al. Analysis of community residents with chronic disease using association rule mining[J]. Chin J Health Stat, 2013, 30(6): 818-820. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201306011.htm [14] 施明明, 李娜, 胡锦峰. 关联规则在社区居民常见慢性病关联性分析中的应用[J]. 预防医学, 2018, 30(8): 766-770. DOI: 10.19485/j.cnki.issn2096-5087.2018.08.003.Shi MM, Li N, Hu JF. Application of association rules in analyzing the relationship between common chronic diseases[J]. Prev Med, 2018, 30(8): 766-770. DOI: 10.19485/j.cnki.issn2096-5087.2018.08.003. [15] 杨文彬, 於涛, 王雯, 等. 农村高血压人群体质指数与血脂水平的相关性研究[J]. 中华疾病控制杂志, 2016, 20(5): 456-459, 473. DOI: 10.16462/j.cnki.zhjbkz.2016.05.007.Yang WB, Yu T, Wang W, et al. The relationship between body mass index and lipid profile among hypertensive populations in Chinese rural districts[J]. Chin J Dis Control Prev, 2016, 20(5): 456-459, 473. DOI: 10.16462/j.cnki.zhjbkz.2016.05.007. [16] 高凡, 徐慧兰, 秦露露. 湖南益阳农村老年糖尿病前期人群血脂异常及其影响因素分析[J]. 中华疾病控制杂志, 2016, 20(7): 652-655. DOI: 10.16462/j.cnki.zhjbkz.2016.07.002.Gao F, Xu HL, Qin LL. Analysis of the dyslipidemia and its influencing factors in the elderly with prediabetes in rural areas in Yiyang of Hunan[J]. Chin J Dis Control Prev, 2016, 20(7): 652-655. DOI: 10.16462/j.cnki.zhjbkz.2016.07.002. [17] 李慧, 叶浩森, 徐郁, 等. 珠海市居民慢性病患病情况及其影响因素分析[J]. 中华疾病控制杂志, 2018, 22(1): 14-18. DOI: 10.16462/j.cnki.zhjbkz.2018.01.004.Li H, Ye HS, Xu Y, et al. Prevalence and influencing factors of chronic diseases among residents in Zhuhai[J]. Chin J Dis Control Prev, 2018, 22(1): 14-18. DOI: 10.16462/j.cnki.zhjbkz.2018.01.004. [18] Koh HC, Tan G. Data mining applications in healthcare[J]. J Health Inf Manag, 2005, 19(2): 64-72. http://europepmc.org/abstract/med/15869215 [19] Yoo I, Alafaireet P, Marinov M, et al. Data mining in healthcare and biomedicine: a survey of the literature[J]. J Med Syst, 2012, 36(4): 2431-48. DOI: 10.1007/s10916-011-9710-5.