Prediction study on the exposure of coal mine fuel vehicle exhaust and lung function damage
-
摘要:
目的 探究暴露于煤矿燃油车辆尾气与机体呼吸系统尤其是肺功能损伤的关系,分析煤矿工人发生肺功能下降的危险因素。 方法 采用现况研究,通过整群抽样法从2021年陕北地区接受体检的煤矿工人中抽取研究对象。根据肺功能分为正常组和异常组,采用多因素logistic回归分析模型分析肺功能异常与煤矿燃油车辆尾气暴露之间的关联。 结果 共纳入564名研究对象,陕北地区煤矿工人肺功能正常组和异常组的年龄、性别和工龄差异均有统计学意义(均P < 0.05)。两组人群在二氧化碳(carbon dioxide, CO2)、一氧化氮(nitric oxide, NO)、二氧化氮(nitrogen dioxide, NO2)和多环芳烃(polycyclic aromatic hydrocarbon, PAH)暴露的差异均有统计学意义(均P < 0.05)。调整了年龄、工龄等潜在混杂因素后,NO高暴露(OR=2.01, 95% CI: 1.43~3.04, P < 0.001)和PAH高暴露(OR=1.81, 95% CI: 1.01~4.18, P < 0.05)的煤矿工人发生肺损伤的风险更高,而CO2高暴露(OR=1.24, 95% CI: 0.71~2.36)和NO2高暴露(OR=1.43, 95% CI: 0.54~4.17)风险差异均无统计学意义(均P>0.05)。 结论 在煤矿工人中,男性、年龄大和工龄长,燃油车辆尾气中的NO和PAH是肺功能损伤的危险因素。提示应对煤矿工人采取针对性的保护措施,减少肺功能损伤。 Abstract:Objective The aim of this study was to observe the relationship between exposure to coal mine fuel vehicle exhaust and the respiratory system of the organism, with a particular focus on lung function damage, and to explore the risk factors for the occurrence of lung function decline in coal miners. Methods The current situation study was used to select the study subjects from the coal miners who underwent physical examination in northern Shaanxi in 2021 by cluster sampling. The subjects were divided into two groups based on their lung function: a normal group and an abnormal group. The relationship between lung function abnormalities and exposure to coal mine fuel vehicle exhaust was then examined using multifactorial logistic regression. Results A total of 564 study subjects were included, and the differences in age, gender, and length of service between the normal and abnormal lung function groups of coal miners in northern Shaanxi were statistically significant (all P < 0.05). The differences in carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2) and polycyclic aromatic hydrocarbon (PAH) exposure between the two groups were statistically significant (all P < 0.05). After adjusting for potential confounding factors such as age and seniority, miners exposed to high levels of NO (OR=2.01, 95% CI: 1.43-3.04, P < 0.001) and PAH (OR=1.81, 95% CI: 1.01-4.18, P < 0.05) exhibited a heightened risk of developing lung injury. Injury risk was observed among coal miners with high CO2 exposure (OR =1.24, 95% CI: 0.71-2.36)and NO2 exposure (OR=1.43, 95% CI: 0.54-4.17), but no significant difference was noted between these groups (all P>0.05). Conclusions Among coal miners, males, older, and seniority, exposure to NO and PAH from fuel vehicle exhaust are risk factors for lung function impairment. It is suggested that targeted protective measures should be taken to reduce lung function injury in coal miners. -
Key words:
- Coal mine /
- Vehicle exhaust /
- Lung function
-
表 1 不同肺功能分组煤矿工人的基本特征
Table 1. Basic characteristics of coal miners in different lung function groups
变量
Variable正常组
Control group① (n=288)异常组
Abnormal group① (n=276)χ2/Z值
valueP值
value性别Gender 3.86 0.049 男性Male 284(50.7) 276(49.3) 女性Female 4(100.0) 0(0) 年龄组/岁Age group/years 34.11 < 0.001 20~<30 50(83.3) 10(16.7) 30~<40 201(50.0) 201(50.0) 40~<60 37(36.3) 65(63.7) 工龄/年Seniority/year 23.00 < 0.001 0~ < 5 23(85.2) 4(14.8) 5~ < 10 77(61.6) 48(38.4) ≥10 188(45.6) 224(54.4) BMI/(kg·m-2) 1.70 0.427 0~ < 18.5 5(35.7) 9(64.3) 18.5~ < 24.0 146(52.7) 131(47.3) ≥24.0 137(50.2) 136(49.8) 吸烟Smoking 3.29 0.193 否No 95(49.2) 98(50.8) 是Yes 187(53.0) 166(47.0) 戒烟Former smoker 5(31.2) 11(68.8) 肥胖Obesity 1.01 0.315 否No 251(50.3) 248(49.7) 是Yes 37(56.9) 28(43.1) 高血压Hypertension 1.84 0.175 否No 259(52.1) 238(47.9) 是Yes 29(43.3) 38(56.7) 收缩压Systolicpressure/mmHg 120.60(110.60, 131.20) 122.50(110.30, 131.20) -1.77 0.077 舒张压Diastolicpressure/mmHg 80.20(72.40, 87.20) 81.60(72.70, 87.20) -1.71 0.087 心率/(次·min-1) Heart rate/(times·min-1) 76.70(74.70, 82.40) 74.30(72.80, 80.20) 2.25 0.025 肺活量Vital capacity/L 3.77(3.51, 4.05) 3.09(2.83, 3.32) 19.81 < 0.001 注:①以人数(占比/%)或M(P25, P75)表示。
Note:①Number of people(proportion/%) or M(P25, P75).表 2 不同肺功能分组煤矿工人燃油车辆尾气暴露
Table 2. Fuel vehicle exhaust exposure in coal miners of different lung function subgroups
变量
Variable正常组
Control group① (n=288)异常组
Abnormal group① (n=276)χ2值
valueP值
value一氧化碳暴露Carbon monoxide exposure 0.62 0.429 低暴露Low exposure 243(51.8) 226(48.2) 高暴露High exposure 45(47.4) 50(52.6) 二氧化碳暴露Carbon dioxide exposure 7.10 0.008 低暴露Low exposure 255(53.5) 222(46.5) 高暴露High exposure 33(37.9) 54(62.1) 一氧化氮暴露Nitric oxide exposure 9.71 0.002 低暴露Low exposure 240(54.5) 200(45.5) 高暴露High exposure 48(38.7) 76(61.3) 二氧化氮暴露Nitrogen dioxide exposure 4.81 0.028 低暴露Low exposure 281(52.0) 259(48.0) 高暴露High exposure 7(29.2) 17(70.8) 多环芳烃暴露Polycyclic aromatic hydrocarbon exposure 8.67 0.003 低暴露Low exposure 269(53.2) 237(46.8) 高暴露High exposure 19(32.8) 39(67.2) 注:①以人数(占比/%)或M(P25, P75)表示。
Note: ① Number of people(proportion/%) or M(P25, P75).表 3 煤矿燃油车辆尾气与肺功能的多因素logistic回归分析
Table 3. Logistic regression analysis of coal mine fuel vehicle exhaust and lung function
变量Variable 粗模型
Crude model模型1
Model 1模型2
Model 2模型3
Model 3OR值value
(95% CI)P值
valueOR值value
(95% CI)P值
valueOR值value
(95%CI)P值
valueOR值value
(95% CI)P值
value二氧化碳高暴露Carbon dioxide High exposure 1.09(0.54~2.20) 0.820 1.13(0.59~2.24) 0.639 1.18(0.64~2.30) 0.461 1.24(0.71~2.36) 0.247 一氧化氮高暴露Nitric oxide High exposure 1.90(1.27~2.86) 0.002 1.96(1.32~2.92) < 0.001 2.01(1.36~2.97) < 0.001 2.08(1.43~3.04) < 0.001 二氧化氮高暴露Nitrogen dioxide High exposure 1.31(0.43~4.05) 0.637 1.36(0.48~4.11) 0.517 1.43(0.54~4.17) 0.378 1.41(0.52~4.15) 0.397 多环芳烃高暴露Polycyclic aromatic hydrocarbon High exposure 1.39(0.55~3.54) 0.489 1.45(0.61~3.61) 0.314 1.56(0.72~3.96) 0.134 1.81(1.01~4.18) 0.043 注:模型1调整了性别、年龄和工龄;模型2调整了心率和肺活量;模型3调整了BMI、吸烟、肥胖、高血压。
Note: Model 1 adjusted for gender, age, and seniority; Model 2 adjusted for heart rate and lung capacity; Model 3 adjusted for BMI, smoking, obesity, hypertension. -
[1] 苗彦平, 石高峰, 涂庆毅, 等. 风流场作用下煤矿井下燃油车辆尾气迁移规律[J]. 西安科技大学学报, 2022, 42(5): 894-901. DOI: 10.13800/j.cnki.xakjdxxb.2022.0507.Miao YP, Shi GF, Tu QY, et al. Exhaust gas migration law of underground fuel vehicles in coal mine under the action of air flow field[J]. Journal of Xi'an University of Science and Technology, 2022, 42(5): 894-901. DOI: 10.13800/j.cnki.xakjdxxb.2022.0507. [2] 郑晓亮, 陈旭, 苗彦平, 等. 井下防爆柴油机无轨胶轮车尾气在线监测[J]. 煤炭工程, 2022, 54(9): 87-91. DOI: 10.11799/ce202209016.Zheng XL, Chen X, Miao YP, et al. On-line monitoring for tail gas from underground explosion-proof diesel engine trackless rubber-tyred vehicle[J]. Coal Eng, 2022, 54(9): 87-91. DOI: 10.11799/ce202209016. [3] 王晓. 矿用低污染防爆柴油机的研制[J]. 机械设计与制造, 2022, (7): 179-182. DOI: 10.19356/j.cnki.1001-3997.2022.07.019.Wang X. Development of a low pollution explosion-proof diesel engine in coalmine[J]. Mechanical Design and Manufacturing, 2022, (7): 179-182. DOI: 10.19356/j.cnki.1001-3997.2022.07.019. [4] Zhou G, Yang Y, Duan JJ, et al. Influence of mixed ventilation on particulate-gas diffusion and distribution of diesel engine exhaust in fully mechanized excavation face[J]. Sci Rep, 2023, 13(1): 1585. DOI: 10.1038/s41598-023-27812-z. [5] Singh N, Arora N. Diesel exhaust exposure in mice induces pulmonary fibrosis by TGF-β/Smad3 signaling pathway[J]. Sci Total Environ, 2022, 807(Pt1): 150623. DOI: 10.1016/j.scitotenv.2021.150623. [6] Neophytou AM, Ferguson JM, Costello S, et al. Diesel exhaust and respiratory dust exposure in miners and chronic obstructive pulmonary disease (COPD) mortality in DEMS Ⅱ[J]. Environ Int, 2024, 185: 108528. DOI: 10.1016/j.envint.2024.108528. [7] 穆敏. 煤尘诱导肺部炎症/纤维化及维生素D治疗潜在机制研究[D]. 淮南: 安徽理工大学, 2021.Mu M. Study on coal dust-induced lung inflammation/fibrosis and the potential mechanism of vitamin D treatment[D]. Huainan: Anhui University of Science and Technology, 2021. [8] 查震球, 何玉琢, 徐伟, 等. 吸烟对慢性阻塞性肺疾病及呼吸道症状的影响[J]. 中华疾病控制杂志, 2020, 24(1): 46-51, 56. DOI: 10.16462/j.cnki.zhjbkz.2020.01.010.Zha ZQ, He YZ, Xu W, et al. Effects of smoking on chronic obstructive pulmonary disease and respiratory symptoms[J]. Chin J Dis Control Prev, 2020, 24(1): 46-51, 56. DOI: 10.16462/j.cnki.zhjbkz.2020.01.010. [9] 中华人民共和国卫生部. 工作场所空气中粉尘测定第2部分: 呼吸性粉尘浓度: GBZ/T 192.4—2007[S]. 北京: 中国标准出版社, 2007: 1-5.Ministry of Health, People's Republic of China. Determination of dust in the air of workplace. Part 2: respirable dust concentration: GBZ/T 192.4—2007[S]. Beijing: Standards Press of China, 2007: 1-5. [10] 中华人民共和国卫生部. 工作场所空气中有害物质监测的采样规范: GBZ 159-2004[S]. 北京: 人民卫生出版社, 2004: 1-9.Ministry of Health, People's Republic of China. Specifications of air sampling for hazardous substances monitoring in the workplace. GBZ 159-2004[S]. Beijing: People's Medical Publishing House, 2004: 1-9. [11] GBD Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the global burden of disease study 2021[J]. Lancet, 2024, 403(10440): 2162-2203. DOI: 10.1016/S0140-6736(24)00933-4. [12] Wang M, Aaron CP, Madrigano J, et al. Association between long-term exposure to ambient air pollution and change in quantitatively assessed emphysema and lung function[J]. JAMA, 2019, 322(6): 546-556. DOI: 10.1001/jama.2019.10255. [13] Hu PX, Li ZQ, Hu AY, et al. Are workers also vulnerable to the impact of ambient air pollution? Insight from a large-scale ventilatory exam[J]. Sci Total Environ, 2024, 947: 174634. DOI: 10.1016/j.scitotenv.2024.174634. [14] Li ZQ, Wang Y, Wu WJ, et al. The relative contribution of PM2.5 components to the obstructive ventilatory dysfunction-insights from a large ventilatory function examination of 305 022 workers in Southern China[J]. Environ Int, 2024, 187: 108721. DOI: 10.1016/j.envint.2024.108721. [15] Du MR, Hall GL, Franklin P, et al. Association between diesel engine exhaust exposure and lung function in Australian gold miners[J]. Int Jo Hyg Envir Heal, 2020, 226: 113507. DOI: 10.1016/j.ijheh.2020.113507. [16] Gren L, Dierschke K, Mattsson F, et al. Lung function and self-rated symptoms in healthy volunteers after exposure to hydrotreated vegetable oil (HVO) exhaust with and without particles[J]. Part Fibre Toxicol, 2022, 19(1): 9. DOI: 10.1186/s12989-021-00446-7. [17] Ferguson JM, Costello S, Elser H, et al. Chronic obstructive pulmonary disease mortality: the diesel exhaust in miners study (DEMS)[J]. Environ Res, 2020, 180: 108876. DOI: 10.1016/j.envres.2019.108876. [18] 李智慧, 许林, 赵秀芬, 等. 呼出气一氧化氮检测与慢性阻塞性肺疾病严重程度的相关性分析[J]. 中国医药指南, 2024, 22(8): 84-87. DOI: 10.15912/j.issn.1671-8194.2024.08.025.Li ZH, Xu L, Zhao XF, et al. Correlation analysis between exhaled breath nitric oxide test and severity of chronic obstructive pulmonary disease[J]. Guide of China Medicine, 2024, 22(8): 84-87. DOI: 10.15912/j.issn.1671-8194.2024.08.025. [19] 林欢, 夏筱文, 林泳峰. 柴油机尾气中多环芳烃暴露生物标志物的表征及应用[J]. 环境与职业医学, 2023, 40(5): 529-535. DOI: 10.11836/JEOM22431.Lin H, Xia XW, Lin YF. Characterization and application of exposure biomarkers of polycyclic aromatic hydrocarbons in diesel exhaust[J]. J Environ Occup Med, 2023, 40(5): 529-535. DOI: 10.11836/JEOM22431. -