Application of multivariable grey model (1, n) in prediction of aedes albopictus density
-
摘要: 目的 利用伊蚊诱捕器监测法得出指标与气象资料建立多变量灰色预测模型(1,n)(multivariable grey model,MGM(1,n)),对伊蚊密度进行短期预测。方法 以广州市某农村为研究现场,使用幼虫监测法和伊蚊诱捕器监测法监测伊蚊密度,并收集同期气象资料。利用2014年7~11月的诱蚊诱卵指数(mosquito and oviposition positive index,MOI)和5项气象资料指标与布雷图指数(breteau index,BI)进行灰色关联度分析,选择关联度较大的变量建立MGM(1,n)灰色预测模型,使用12月资料验证模型预测效果。结果 各指标与BI的灰色关联序为MOI,相对湿度,最高平均气温,降雨量,平均气温和最低平均气温。采用BI与MOI建立MGM(1,2)模型,BI拟合值和实测值的平均绝对误差为9.14,平均相对误差为34.73%。而对MOI的拟合值和实测值的平均绝对误差为2.04,平均相对误差为21.44%。对12月伊蚊密度进行预测,BI预测值与实测值平均绝对误差为1.23,而MOI平均绝对误差1.43。结论 多变量灰色预测模型MGM(1,2)能对白纹伊蚊密度进行短期的预测。Abstract: Objective To make a short-term prediction about aedes albopictus density by multivariable grey model (MGM) (1,n), based on the aedes trap monitoring data and climate data. Methods Field investigation on aedes albopictus density at a village in Guangzhou was performed using aedes trap monitoring and traditional larval monitoring, and meteorological data were collected simultaneously. MGM (1,n) was established based on the variables with maximum slope degree of grey incidence, which was calculated by grey relational analysis utilizing mosquito and oviposition positive index (MOI), and five items of meteorological data and breteau index(BI), from July to November, 2014. The data in December was used to verify the prediction effect of the model. Results MOI had the maximum slope degree of grey incidence, then relative humidity, maximum mean temperature, precipitation, mean temperature and minimum mean temperature followed. MGM (1, 2) was developed by BI and MOI. The average absolute errors were 9.14 and 2.04 for BI and MOI, respectively. The average relative errors were 34.73% and 21.44%. When forecasting the density of aedes in December, the average absolute errors were 1.23 and 1.43 for BI and MOI, respectively. Conclusions MGM (1, 2) can be used to make a short-term prediction for aedes albopictus density.
-
Key words:
- Aedes /
- Models, statistical /
- Epidemiologic methods
-
熊劲光,黄振宇,陈平华,等. 一起登革热和一起基孔肯雅热暴发疫情的对比分析 [J]. 中华疾病控制杂志, 2012,16(4):328-331. 廖宝林,张复春,周伟泽,等. 登革热重症病例的临床与实验室预警指标 [J]. 实用医学杂志, 2011,27(19):3483-3484. Schaffner F, Mathis A. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future [J]. Lancet Infect Dis, 2014,14(12):1271-1280. 余向华,徐毅,吴正可,等. 蚊媒传染病气象影响因素分析 [J]. 中国媒介生物学及控制杂志, 2008,19(1):61-63. 李美青,刘彬,罗雷,等. 伊蚊诱捕器监测法在社区蚊媒监测中的应用 [J]. 热带医学杂志, 2012,12(10):1260-1263. 邓聚龙. 灰色系统基本方法 [M]. 武汉: 华中工学院出版社, 1987. 翟军,盛建明,冯英浚. MGM(1,n)灰色模型及应用 [J]. 系统工程理论与实践, 1997,(5):110-114. 黄春萍,倪宗瓒. 灰色模型在预测肺结核发病率中的应用 [J]. 现代预防医学, 2002,21(6):791-793. Azil AH, Li M, Williams CR. Dengue vector surveillance programs:a review of methodological diversity in some endemic and epidemic countries [J]. Asia Pac J Public Health, 2011,23(6):827-842. 马红梅,柳小青,陈海婴. 基于风险评估矩阵法的城市蚊媒疾病风险研究 [J]. 中华疾病控制杂志, 2014,18(9):887-890. Wang C, Jiang B, Fan J, et al. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model [J]. Asia Pac J Public Health, 2014,26(1):48-57. Pham HV, Doan HT, Phan TT, et al. Ecological factors associated with dengue fever in a Central Highlands province, Vietnam [J]. BMC Infect Dis, 2011,11:172. 易彬樘,张治英,徐德忠,等. 气候因素对登革热媒介伊蚊密度影响的研究 [J]. 中国公共卫生, 2003,19(2):129-131. 于国伟,汤林华. 微小按蚊密度评价灰色模型研究 [J]. 中国寄生虫学与寄生虫病杂志, 2005,23(4):198-201. 江毅民,严子锵,胡志刚,等. 气候因素用于白纹伊蚊密度预测的探索 [J]. 热带医学杂志, 2014,14(2):235-237. 于德宪,林立丰,罗雷, 等. 人工神经网络模型用于分析气候因素对白纹伊蚊密度影响的初步探讨 [J]. 南方医科大学学报, 2010,30(7):1604-1605. Talla C, Diallo D, Dia I, et al. Statistical modeling of the abundance of vectors of West African Rift Valley fever in Barkedji, Senegal [J]. PLoS One, 2014,9(12):e114047. 林立丰,段金花,李荣彪,等. 现场比较诱蚊诱卵器与传统幼虫监测效果的研究 [J]. 中国媒介生物学及控制杂志, 2006,17(6):454-457. Wee LK, Weng SN, Raduan N, et al. Relationship between rainfall and Aedes larval population at two insular sites in Pulau Ketam, Selangor, Malaysia [J]. Southeast Asian J Trop Med Public Health, 2013,44(2):157-166. Tian HY, Bi P, Cazelles B, et al. How environmental conditions impact mosquito ecology and Japanese encephalitis: an eco-epidemiological approach [J]. Environ Int, 2015,79:17-24.
点击查看大图
计量
- 文章访问数: 538
- HTML全文浏览量: 61
- PDF下载量: 577
- 被引次数: 0