A time-series prediction and analysis on rural inpatient with cardio-cerebrovascular disease in Wugang
-
摘要:
目的 建立武冈市农村地区心脑血管疾病(cardio-cerebrovascular disease,CVD)住院病例的预测模型,并对CVD住院病例的变化趋势进行预测分析,为医院合理配置CVD科室医疗资源提供参考依据。 方法 利用Stata 14.0软件对武冈市2013年1月~2016年12月农村地区CVD住院人次月度数据构建季节性自回归移动平均混合模型(seasonal autoregressive integrated moving average model,SARIMA),并对2017年武冈市农村地区CVD住院病例进行预测分析。 结果 通过模型构建最终拟合的CVD住院病例预测模型为SARIMA(2,1,1)x(0,1,0)12。Ljung-Box Q检验结果显示残差序列为白噪音序列(Q=11.12,P=0.680),说明所建模型拟合度较好,且2017年的预测结果与观测结果基本一致,总体相对误差在-1.2%左右。预测结果显示,夏季为每年CVD住院高峰期。 结论 SARIMA模型可以对武冈市CVD住院病例进行较准确的短期预测,医院可以根据不同月份CVD就医需求合理配置院内CVD科室医疗资源。 -
关键词:
- 心脑血管 /
- 时间序列分析 /
- 自回归综合移动平均模型 /
- 季节性 /
- 预测
Abstract:Objective To establish a predictive model for inpatients of cardio-cerebrovascular disease in rural areas of Wugang through time series analysis, and predict the changing trend of cardio-cerebrovascular disease, so as to offer guidance for the health care resources allocation and prevention and control of cardio-cerebrovascular disease. Methods The seasonal autoregressive integrated moving average model (SARIMA) was constructed based on the monthly number of cases of cardio-cerebrovascular disease in rural areas from January 2013 to December 2016 by Stata 14.0 software, and the predictive effect of the model was verified with the monthly number of inpatients of cardio-cerebrovascular disease in 2017. Results The final fitting model of inpatients of cardio-cerebrovascular disease was SARIMA (2, 1, 1)×(0, 1, 0)12. The residual sequence of the model was diagnosed. Results of Ljung-Box Q test showed that the residual sequence was white noise sequence (Q=11.12, P=0.68). In addition, the 2017 forecast was basically consistent with the observations, the overall relative error was around -1.2%. The results showed that the summer was the peak period of cardiovascular and cerebrovascular hospitalization. Conclusion SARIMA model can accurately predict the number of inpatients of cardio-cerebrovascular disease in Wugang, which can provide data support for the hospital administrator to rationally allocate medical resources in the cardiovascular according to the needs of cardio-cerebrovascular treatment in different months. -
表 1 备选模型的参数估计
Table 1. The estimation of model parameters
SARIMA(2,1,1)(0,1,0)12 SARIMA(2,1,0)(0,1,0)12 B值 Z值 P值 B值 Z值 P值 AR1 -0.67 -3.68 <0.001 -0.91 -5.20 <0.001 AR2 -0.57 -3.44 0.001 -0.65 -4.30 <0.001 Ma1 -0.99 -3.09 0.002 - - - 表 2 2017年武冈市农村心脑血管住院病例实际值与预测值的结果比较
Table 2. Comparison between predicted and actual values of rural cardio-cerebrovascular inpatients in Wugang in 2017
月份 实际值 预测值 绝对误差 相对误差 1 741 808 67 0.090 2 84 731 -114 -0.135 3 1 007 938 -69 -0.069 4 980 899 -81 -0.083 5 902 989 87 0.096 6 1 044 979 -65 -0.062 7 1 112 1 065 -47 -0.042 8 991 939 -52 -0.052 9 879 1 016 137 0.156 10 911 938 27 0.030 11 968 954 -14 -0.014 12 915 982 67 0.073 合计 11 295 11 240 -55 -0.012 -
[1] 王妮, 吴炳义, 武继磊, 等. 2012年山东省心脑血管疾病死亡状况及去死因期望寿命研究[J]. 中华疾病控制杂志, 2017, 21(09): 917-920. DOI: 10.16462/j.cnki.zhjbkz.2017.09.014.Wang N, Wu BY, Wu JL, et al. Distribution of cardiocerebral vascular disease death and its life expectancy eliminating causes of death in Shandong Province in 2012[J]. Chin J Dis Control Prev, 2017, 21(09): 917-920. DOI: 10.16462/j.cnki.zhjbkz.2017.09.014. [2] World Health Organization. World health statistics 2018[EB/OL]. (2018-3-28)[2018-12-15] http://www.who.int/iris/bistream/handle/10665/272596/9789241565585eng.pdf?ua=1. [3] 陈伟伟, 高润霖, 刘力生, 等. 《中国心血管病报告2017》概要[J]. 中国循环杂志, 2018, 33(1): 1-8. DOI: 10.3969/j.issn.1000-3614.2018.01.001.Chen WW, Gao RL, Liu LS, et al. Summary of China Cardiovascular Disease Report 2017[J]. Chin Circul J, 2018, 33(01): 1-8. DOI: 10.3969/j.issn.1000-3614.2018.01.001. [4] 李小升, 马春柳, 雷海科, 等. SARIMA模型在医院门诊量预测中的应用[J]. 中国病案, 2013, 14(3): 37-40. DOI: 10.3969/j.issn.1672-2566.2013.03.019.Li XS, Ma CL, Lei HK, et al. Applications of SARIMA Model on Predicting Outpatients Quantity[J]. Chinese Medical Record, 2013, 14(3): 37-40. DOI: 10.3969/j.issn.1672-2566.2013.03.019. [5] 马翠荣, 杨婕, 余小金. 江苏省2006-2014年城乡未成年人跌倒病例的时间序列预测分析[J]. 中华疾病控制杂志, 2018, 22(2): 122-125, 137. DOI: 10.16462/j.cnki.zhjbkz.2018.02.005.Ma CR, Yang J, Yu XJ, et al. The fall injury cases of urban and rural areas for minors in Jiangsu Province: a time-series prediction and analysis, 2006-2014[J]. Chin J Dis Control Prev, 2018, 22(2): 122-125, 137. DOI: 10.16462/j.cnki.zhjbkz.2018.02.005. [6] 易静, 杜昌廷, 王润华, 等. 自回归求和移动平均季节乘积模型在结核病发病率预测中的应用[J]. 中华预防医学杂志, 2007, 41(2): 118-121. DOI: 10.3760/j.issn:0253-9624.2007.02.009.Yi J, Du CT, Wang RH, et al. Applications of multiple seasonal autoregressive integrated moving average (ARIMA) model on predictive incidence of tuberculosis[J]. Chin J Prev Med, 2007, 41(02): 118-121. DOI: 10.3760/j.issn:0253-9624.2007.02.009. [7] 王芳, 柴宗举, 刘雯, 等. 出血性脑卒中发病趋势及时间序列分析[J]. 中国老年学杂志, 2013, 33(17): 4128-4130. DOI: 10.3969/j.issn.1005-9202.2013.17.012.Wang F, Chai ZJ, Liu W, et al. Incidence trend and time series analysis of hemorrhagic stroke[J]. Chin J Ger, 2013, 33(17): 4128-4130. DOI: 10.3969/j.issn.1005-9202.2013.17.012. [8] 谷少华, 陆蓓蓓, 边国林, 等. 大气可吸入颗粒物对心血管疾病急救人次的短期影响[J]. 环境与职业医学, 2016, 33(10): 965-969. DOI: 10.13213/j.cnki.jeom.2016.16140.Gu SH, Lu BB, Bian GL, et al. Short-Term Effect of Inhalable Particulate Matters on Emergency Ambulance Dispatches for Cardiovascular Diseases[J]. Journal of Environmental & Occupational Medine, 2016, 33(10): 965-969. DOI: 10.13213/j.cnki.jeom.2016.16140. [9] 张霞, 刘起勇. 高温热浪对心脑血管病影响研究进展[J]. 中国公共卫生, 2014, 30(2): 242-243. DOI: 10.11847/zgggws2014-30-02-38.Zhang X, Liu QY. Research on the effects of high temperature heat waves on cardiovascular and cerebrovascular diseases[J]. Chinese Journal of Public Health, 2014, 30(2): 242-243. DOI: 10.11847/zgggws2014-30-02-38. [10] 刘方, 张金良, 陆晨. 北京市气温与脑卒中发病关系的时间序列研究[J]. 中华流行病学杂志, 2004(11): 48-52. DOI: 10.3760/j.issn:0254-6450.2004.11.011.Liu F, Zhang JL, Lu C. The relationship of temperature and stroke incidence in Beijing: a time-series study[J]. Chin J Epidemiol, 2004(11): 48-52. DOI: 10.3760/j.issn:0254-6450.2004.11.011. [11] 常倩, 叶云杰, 汪庆庆, 等. 南京市大气污染物与居民心脑血管疾病死亡的相关性[J]. 环境与职业医学, 2017, 34(12): 1041-1045. DOI: 10.13213/j.cnki.jeom.2017.17433.Chang Q, Ye YJ, Wang QQ, et al. Correlation between air pollutants and cardio-cerebrovascular mortality in Nanjing[J]. Journal of Environmental & Occupational Medine, 2017, 34(12): 1041-1045. DOI: 10.13213/j.cnki.jeom.2017.17433. [12] 许安阳, 张丽娟, 李觉, 等. 上海市温度和大气污染对居民心血管疾病门急诊人数的影响[J]. 同济大学学报(医学版), 2017, 38(01): 114-118, 123. DOI: 10.16118/j.1008-0392.2017.01.024.Xu AY, Zhang LJ, Li j, et al. Effects of temperature and air pollution on outpatient and emergency visits for cardiovascular diseases in Shanghai[J]. Journal of Tongji University (Medical Science), 2017, 38(01): 114-118, 123. DOI: 10.16118/j.1008-0392.2017.01.024. [13] Yang J, Zhou M, Ou CQ, et al. Seasonal variations of temperature-related mortality burden from cardiovascular disease and myocardial infarction in China[J]. Environ Pollut, 2017, 5(224): 400-406. DOI: 10.1016/j.envpol.2017.02.020. [14] 顾恺, 何红. 高血压患者夏季和冬季动态血压监测值的差异[J]. 中华高血压杂志, 2016, 24(6): 578-580. DOI: 10.16439/j.cnki.1673-7245.2016.06.019.Gu K, He H. Differences between summer and winter ambulatory blood pressure monitoring values in patients with hypertension[J]. Chinese Journal of Hypertension, 2016, 24(6): 578-580. DOI: 10.16439/j.cnki.1673-7245.2016.06.019. [15] 吕阳, 王志盟, 陈滨. 室内空气环境与高龄者心脑血管疾病关联性研究进展[J]. 建筑科学, 2018, 34(2): 124-130. DOI: 10.13614/j.cnki.11-1962/tu.2018.02.21.Lv Y, Wang ZM, Chen B. A review of the Relationship between Indoor Air Environment and Cardiovascular and Cerebrovascular Disease in the Elderly[J]. Building Science, 2018, 34(2): 124-130. DOI: 10.13614/j.cnki.11-1962/tu.2018.02.21. [16] 廉恒丽, 俞剑琴, 傅映晖. ARIMA与SARIMA模型在医院门诊人次与出院人次预测中的应用[J]. 中国医院统计, 2017, 24(02): 81-84. DOI: 10.3969/j.issn.1006-5253.2017.02.001.Liang HL, Yu JQ, Fu YH. Application of ARIMA and SARIMA model in predicting hospital outpatients and discharges[J]. Chinese Journal of Hospital Statistics, 2017, 24(02): 81-84. DOI: 10.3969/j.issn.1006-5253.2017.02.001.