Analysis on epidemiological characteristics and spatial clusters of scarlet fever in Shandong Province from 2011 to 2018
-
摘要:
目的 探讨山东省2011-2018年猩红热流行特征及空间聚集性, 为猩红热科学防控提供依据。 方法 收集山东省2011-2018年猩红热报告病例资料, 采用描述流行病学方法和空间自相关分析方法对资料进行分析。 结果 山东省2011-2018年共报告猩红热病例45 936例, 年均报告发病率为5.84/10万; 经χ趋势2检验, 逐年发病率呈上升趋势(χ趋势2=5 317.16, P < 0.001)。4-6月和11月-次年1月为发病高峰期。男女性发病率比为1.62:1;3~9岁病例数最多, 占88.94%;幼托儿童(42.42%)、学生(36.94%)和散居儿童(19.50%)占比例最高。全局空间自相关结果显示, 2011-2018年山东省猩红热报告发病率全局Moran's I指数分别为0.374、0.452、0.411、0.439、0.437、0.418、0.478和0.465(均有P < 0.001), 提示发病存在空间聚集性。局部空间自相关结果显示“高-高”聚集区主要集中在济南和青岛两市的主城区, 与高发病率地区较为一致。“低-低”聚集区则主要位于鲁西南和鲁西北地区。 结论 山东省2011-2018年猩红热发病存在流行和空间聚集性, 应加大对高发季节、高危人群和高聚集区域的监测管理, 采取针对性的防控措施, 控制其传播和蔓延。 Abstract:Objective To analyze the epidemiological and spatial cluster of scarlet fever in Shandong Province from 2011 to 2018, and to provide scientific evidence for the prevention and control of scarlet fever. Methods Data of scarlet fever reported cases in Shandong province from 2011 to 2018 were collected and analyzed by the descriptive epidemiological method and spatial autocorrelation method. Results A total of 45 936 scarlet fever cases were reported in Shandong province from 2011 to 2018. The average annual incidence was 5.84/100 000 and showed an increasing trend(χ趋势2= 5 317.16, P < 0.001). There were more cases concentrated from April to June and from November to January.The ratio of male to female was 1.62:1, with the higher prevalence(88.94%) among the total cases aged 3 to 9 years. The majority of scarlet fever cases were preschool children(42.42%), students(36.94%) and scattered children(19.50%), respectively.The global spatial autocorrelation analysis showed that the Moran's I indexes for the incidence were 0.374, 0.452, 0.411, 0.439, 0.437, 0.418, 0.478 and 0.465(all P < 0.001)respectively, suggesting that the incidence of scarlet fever had spatial clustering features in Shandong Province from 2011 to 2018. The local spatial auto correlation analysis showed that high-high clustering areas were mainly distributed in main urban districts of Jinan city and Qingdao city. Areas that located in the southwestern and northwestern parts of Shandong presented the low-low relation. Conclusions The epidemic and spatial clustering of scarlet fever existed in Shandong Province during 2011-2018. The surveillance and management on scarlet fever should be strengthened and the targeted prevention and control efforts should be focused on high incidence seasons, high risk populations and high clustering areas, so as to control the spread of scarlet fever. -
Key words:
- Scarlet fever /
- Epidemiological characteristics /
- Spatial cluster
-
表 1 2011-2018年山东省猩红热病例年龄性别分布情况
Table 1. Sex and age distribution of scarlet fever cases in Shandong from 2011 to 2018
年龄组(岁) 男 女 合计 例数 构成比(%) 例数 构成比(%) 例数 构成比(%) 0~ 117 0.41 62 0.36 179 0.39 1~ 495 1.72 289 1.69 784 1.71 2~ 911 3.16 486 2.84 1 397 3.04 3~ 2 477 8.60 1 285 7.50 3 762 8.19 4~ 4 742 16.46 2 533 14.78 7 275 15.84 5~ 5 941 20.63 3 258 19.01 9 199 20.03 6~ 5 947 20.65 3 565 20.81 9 512 20.71 7~ 3 779 13.12 2 500 14.59 6 279 13.67 8~ 1 921 6.67 1 306 7.62 3 227 7.02 9~ 894 3.10 709 4.14 1 603 3.49 10~ 1 098 3.81 760 4.44 1 858 4.04 ≥15 480 1.67 381 2.22 861 1.87 合计 28 802 100.00 17 134 100.00 45 936 100.00 表 2 山东省2011-2018年猩红热发病率全局空间自相关分析结果
Table 2. The global spatial autocorrelation of scarlet fever incidence in Shandong Province from 2011 to 2018
年份 Moran's I Z值 P值 聚集 2011 0.374 6.708 0.002 是 2012 0.452 7.766 0.001 是 2013 0.411 7.582 0.001 是 2014 0.439 7.929 0.001 是 2015 0.437 7.457 0.001 是 2016 0.418 7.818 0.001 是 2017 0.478 9.310 0.001 是 2018 0.465 9.410 0.001 是 -
[1] Brockmann SO, Eichner L, Eichner M. Constantly high incidence of scarlet fever in Germany[J]. Lancet Infect Dis, 2018, 18(5): 499-500. DOI: 10.1016/S1473-3099(18)30210-X. [2] Watts V, Balasegaram S, Brown CS, et al. Increased risk for invasive group a streptococcus disease for household contacts of scarlet fever cases, England, 2011-2016[J]. Emerg Infect Dis, 2019, 25(3): 529-537. DOI: 10.3201/eid2503.181518. [3] 秦颖, 冯录召, 余宏杰. 2015年春夏季全国猩红热疫情流行病学特征分析[J].疾病监测, 2015, 30(12): 1002-1007. DOI: 10.3784/j.issn.1003-9961.2015.12.005.Qin Y, Feng LZ, Yu HJ. Epidemiology of scarlet fever in China during spring to summer season 2015[J]. Dis Surveillance, 2015, 30(12): 1002-1007. DOI: 10.3784/j.issn.1003-9961.2015.12.005. [4] Luk EY, Lo JY, Li AZ, et al. Scarlet fever epidemic, Hong Kong, 2011[J]. Emerg Infect Dis, 2012, 18(10): 1658-1661. DOI: 10.3201/eid1810.111900. [5] Hsieh YC, Huang YC. Scarlet fever outbreak in Hong Kong, 2011[J]. J Microbiol Immunol Infect, 2011, 44(6): 409-411. DOI: 10.1016/j.jmii.2011.07.003. [6] Mahara G, Chhetri JK, Guo X. Increasing prevalence of scarlet fever in China[J]. BMJ, 2016, 353: i2689. DOI: 10.1136/bmj.i2689. [7] 郑芸鹤, 孟蕾, 任晓卫, 等.甘肃省2013年猩红热发病的空间聚集性分析[J].中华疾病控制杂志, 2015, 19(10): 979-982. DOI: 10.16462/j.cnki.zhjbkz.2015.10.003.Zheng YH, Meng L, Ren XW, et al. Spatial aggregation analysis on scarlet fever in Gansu Province, 2013[J]. Chin J Dis Control Prev, 2015, 19(10): 979-982. DOI: 10.16462/j.cnki.zhjbkz.2015.10.003. [8] 中华人民共和国卫生部. WS282-2008猩红热诊断标准[S].北京: 人民卫生出版社, 2008.National Health Commission of the People's Republic of China. WS 282-2008 Diagnostic criteria for scarlet fever[S]. Beijing: People′s Medical Publishing House, 2008. [9] 祝寒松, 王灵岚, 林代华, 等.福建省2011-2016年人间布鲁氏菌病流行病学分析和时空聚集探测[J].中华流行病学杂志, 2017, 38(9): 1212-1217. DOI: 10.3760/cma.j.issn.0254-6450.2017.09.014.Zhu HS, Wang LL, Lin DH, et al. Analysis on epidemiology and spatial-temporal clustering of human brucellosis in Fujian Province, 2011-2016[J]. Chin J Epidemiol, 2017, 38(9): 1212-1217. DOI: 10.3760/cma.j.issn.0254-6450.2017.09.014. [10] 张娜, 杨兴光, 王国永, 等.山东省2009-2015年HIV/AIDS流行的时空分布特征[J].中华流行病学杂志, 2017, 38(2): 226-230. DOI: 10.3760/cma.j.issn.0254-6450.2017.02.018.Zhang N, Yang XG, Wang GY, et al. Spatiotemporal characteristics of HIV/AIDS in Shangdong Province, 2009-2015[J]. Chin J Epidemiol, 2017, 38(2): 226-230. DOI: 10.3760/cma.j.issn.0254-6450.2017.02.018. [11] 国家统计局.中国统计年鉴[EB/OL]. (2019-01-01)[2019-10-09]. http://www.stats.gov.cn/tjsj/ndsj/.National Bureau of Statistics.China Statistical Yearbook[EB/OL].(2019-01-01)[2019-10-09]. http://www.stats.gov.cn/tjsj/ndsj/. [12] 陈伟, 赵晓静, 张杰, 等.河南省2005-2014年猩红热流行特征分析[J].中华疾病控制杂志, 2016, 20(1): 9-12. DOI: 10.16462/j.cnki.zhjbkz.2016.01.003.Chen W, Zhao XJ, Zhang J, et al. Analysis on epidemiological characteristics of scarlet fever in Henan Province, 2005-2014[J]. Chin J Dis Control Prev, 2016, 20(1): 9-12. DOI: 10.16462/j.cnki.zhjbkz.2016.01.003. [13] 中国疾病预防控制局. 2018年全国法定传染病疫情概况[EB/OL]. (2019-04-24)[2019-10-09]. http://www.nhc.gov.cn/jkj/s3578/201904/050427ff32704a5db64f4ae1f6d57c6c.shtml?fr-om=groupmessage.The China Disease Prevention and Control Center.Summary of the national notifiable surveillance data of infectious diseases in 2018[EB/OL].(2019-04-24)[2019-10-09]. http://www.nhc.gov.cn/jkj/s3578/201904/050427ff32704a5db64f4ae1f6d57c6c.shtml?from=groupmessage. [14] 苏健婷, 王超, 高燕琳, 等.北京市2007-2016年猩红热流行病学特征分析[J].中华疾病控制杂志, 2018, 22(8): 846-848. DOI: 10.16462/j.cnki.zhjbkz.2018.08.021.Su JT, Wang C, Gao YL, et al. Study on the epidemiological characteristics of scarlet fever in Beijing from 2007 to 2016[J]. Chin J Dis Control Prev, 2018, 22(8): 846-848. DOI: 10.16462/j.cnki.zhjbkz.2018.08.021. [15] Li WX, Xu HM, Sun Q, et al. Outbreak of scarlet fever in Pudong new area of Shanghai, China: a case-control study[J]. Pediatr Infect Dis J, 2013, 32(2): 195-196. DOI: 10.1097/INF.0b013e3182756292. [16] 宁少奇, 陈飒, 曹磊, 等.陕西省2010-2016年猩红热流行特征分析及趋势预测[J].中华疾病控制杂志, 2018, 22(6): 585-589. DOI: 10.16462/j.cnki.zhjbkz.2018.06.011.Ning SQ, Chen S, Cao L, et al. Epidemiological characteristics and trend of scarlet fever in Shaanxi Province from 2010 to 2016[J]. Chin J Dis Control Prev, 2018, 22(6): 585-589. DOI: 10.16462/j.cnki.zhjbkz.2018.06.011. [17] 窦伟洁, 宋燕, 韩志琰, 等.基于Geo DA的山东省县级卫生资源配置空间分析[J].中国卫生事业管理, 2018, 35(6): 424-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwssygl201806008Dou WJ, Song Y, Han ZY, et al. Spatial analysis of county-level health resources allocation in Shandong Province based on Geo DA[J]. Chin Health Service Manage, 2018, 35(6): 424-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwssygl201806008 [18] 杨素雯, 崔树义. 2016年山东省流动人口动态监测数据分析报告[J].经济动态与评论, 2017, (1): 3-55. http://www.cnki.com.cn/Article/CJFDTotal-JJDP201701001.htmYang SW, Cui SY. Report on migrant population dynamic monitoring data analysis of Shandong Province in 2016[J]. Review of Economic Trends, 2017, (1): 3-55. http://www.cnki.com.cn/Article/CJFDTotal-JJDP201701001.htm