Study on the effects of long working hours and commuting time on menstrual abnormalities among Chinese female nurses
-
摘要:
目的 评价长工时作业和通勤时间对女护士月经状况的影响,为相关部门合理调配护士的工作时间提供依据。 方法 2016年5月―2016年11月对中国8 904名女护士进行问卷调查,收集人口学、职业和月经状况数据,用二分类logistic回归分析模型分析长工时作业与通勤时间对月经异常的影响。 结果 女护士工作时间为(8.2±1.1)h、中位通勤时间为1.0(0.5, 1.0)h。月经异常率为41.0%。工作时间>8 h对女护士的月经异常各指标均有影响,其中对月经持续时间变化的影响最大(OR=1.651, 95% CI: 1.403~1.942, P < 0.001)。通勤时间>1 h对月经异常各指标均有影响,其中对月经持续时间变化的影响最大(OR=1.368, 95% CI: 1.178~1.588, P < 0.001)。 结论 长工时作业与通勤时间较长会导致女护士月经异常风险升高,是月经异常的影响因素。 Abstract:Objective To evaluate the effects of long-time work and commuting time on the menstrual status of female nurses, and to provide a basis for relevant departments to reasonably allocate the working hours of nurses. Methods A questionnaire survey was conducted among 8 904 female nurses in China from May to November 2016. Demographic, occupational and menstrual data were collected. The effects of long-time work and commuting time on menstrual abnormalities were analyzed by binary logistic regression models. Results The working time of female nurses was (8.2±1.1) h, and the median commuting time was 1.0 (0.5, 1.0) h; The abnormal rate of menstruation was 41.0%. Working time > 8 h had a significant impact on all indexes of menstrual abnormalities of female nurses, and had the greatest impact on the change of menstrual duration (OR=1.651, 95% CI: 1.403-1.942, P < 0.001). Commuting time > 1 h had a significant impact on all indicators of menstrual abnormalities, among which it had the greatest impact on the change of menstrual duration (OR=1.368, 95% CI: 1.178-1.588, P < 0.001). Conclusion Long working hours and long commuting time increase the risk of abnormal menstruation in female nurses, and it is the influencing factor of abnormal menstruation. -
Key words:
- Long working hours /
- Commuting time /
- Nurses /
- Menstruation
-
表 1 不同工作时间和通勤时间的女护士的基本情况[n(%)]
Table 1. Basic information of female nurses with different working times and commuting time [n(%)]
指标 工作时间 t/Z值 P值 通勤时间 t/Z值 P值 ≤8 h(n=7 825) >8 h(n=1 079) ≤1 h(n=7 338) >1 h(n=1 566) 年龄(x±s, 岁) 31.3±7.6 32.0±7.2 -3.020 a 0.003 31.5±7.6 30.7±6.5 3.320 a 0.001 婚姻状况 3.140 b 0.208 8.856 b 0.012 未婚 2 299(29.4) 344(31.9) 2 227(30.4) 416(26.6) 已婚 5 380(68.7) 713(66.1) 4 974(67.8) 1 119(71.5) 离婚或丧偶 146(1.9) 22(2.0) 137(1.9) 31(2.0) 教育程度 10.877 b 0.001 5.572 b 0.018 大专以下 506(6.5) 42(3.9) 472(6.4) 76(4.9) 大专及以上 7 319(93.5) 1 037(96.1) 6 866(93.6) 1 490(95.1) 年收入水平(万) 34.724 b < 0.001 158.583 b < 0.001 < 1 1 003(12.8) 141(13.1) 966(13.2) 178(11.4) 1~ < 5 3 415(43.6) 391(36.2) 3 310(45.1) 496(31.7) 5~ < 10 2 470(31.6) 360(33.4) 2 254(30.7) 576(36.8) ≥10 937(12.0) 187(17.3) 808(11.0) 316(20.2) 吸烟史 55(0.7) 10(0.9) 0.656 a 0.418 54(0.7) 11(0.7) 0.020 a 0.888 饮酒史 176(2.3) 31(2.9) 1.625 a 0.202 171(2.3) 36(2.3) 0.006 a 0.940 生育史 4 587(58.6) 590(54.7) 6.047 a 0.014 4 273(58.2) 904(57.7) 0.135 b 0.713 注:a表示采用独立样本t检验进行分析;b表示采用秩和检验进行分析。 表 2 不同工作作业和长通勤时间的月经异常率[n(%)]
Table 2. Abnormal menstrual rate of different work and long commuting time [n(%)]
指标 工作时间 χ2值 P值 通勤时间 χ2值 P值 ≤8 h >8 h ≤1 h >1 h 月经异常 3 112(39.8) 541(50.1) 42.138 < 0.001 2 933(40.0) 720(46.0) 19.248 < 0.001 周期紊乱 1 533(19.6) 306(28.4) 44.489 < 0.001 1 452(19.8) 387(24.7) 19.104 < 0.001 月经量异常 1 373(17.6) 271(25.1) 36.090 < 0.001 1 306(17.8) 338(21.6) 12.287 < 0.001 月经持续时间变化 579(7.4) 124(11.5) 21.843 < 0.001 548(7.5) 155(9.9) 10.478 0.001 痛经 1 055(13.5) 233(21.6) 50.427 < 0.001 1 008(13.7) 280(17.9) 17.906 < 0.001 表 3 工作时间和通勤时间对女护士月经异常影响的多因素分析
Table 3. Multivariate analysis of the influence of working time and commuting time on menstrual abnormalities of female nurses
指标工作时间 通勤时间 OR (95% CI)值 χ2值 P值 OR (95% CI)值 χ2值 P值 月经异常 1.467(1.290~1.669) 33.983 < 0.001 1.243(1.112~1.389) 14.734 < 0.001 月经周期紊乱 1.547(1.330~1.799) 31.972 < 0.001 1.200(1.048~1.375) 6.930 0.001 月经量异常 1.541(1.333~1.782) 34.037 < 0.001 1.283(1.127~1.461) 14.139 < 0.001 月经持续时间变化 1.651(1.333~1.782) 36.531 < 0.001 1.368(1.178~1.588) 16.938 < 0.001 痛经 1.554(1.263~1.912) 17.372 < 0.001 1.308(1.083~1.580) 7.785 0.005 注:以年龄、婚姻状况、教育程度、收入水平、生育史、轮班为控制因素。 -
[1] Descatha A, Sembajwe G, Baer M, et al. WHO/ILO work-related burden of disease and injury: protocol for systematic reviews of exposure to long working hours and of the effect of exposure to long working hours on stroke[J]. Environ Int, 2018, 119: 366-378. DOI: 10.1016/j.envint.2018.06.016. [2] 刘晓曼, 王瑾, 王超, 等. 长工时对互联网企业员工工作相关肌肉骨骼疾患和职业倦怠的影响[J]. 中国职业医学, 2020, 47(2): 135-140. DOI: 10.11763/j.issn.2095-2619.2020.02.003.Liu XM, Wang J, Wang C, et al. Influence of long working hours on job-related musculoskeletal disorders and job burnout of employees in Internet enterprises[J]. Chin Occup Med, 2020, 47(2): 135-140. DOI: 10.11763/j.issn.2095-2619.2020.02.003. [3] Weston G, Zilanawala A, Webb E, et al. Long work hours, weekend working and depressive symptoms in men and women: findings from a UK population-based study[J]. J Epidemiol Community Health, 2019, 73(5): 465-474. DOI: 10.1136/jech-2018-211309. [4] Cai C, Vandermeer B, Khurana R, et al. The impact of occupational shift work and working hours during pregnancy on health outcomes: a systematic review and meta-analysis[J]. Am J Obstet Gynecol, 2019, 221(6): 563-576. DOI: 10.1016/j.ajog.2019.06.051. [5] 陈妍吉. 通勤时间对农民工健康的影响[J]. 河北科技师范学院学报(社会科学版), 2021, 20(3): 12-21. DOI: 10.3969/j.issn.1672-7991.2021.03.003.Chen YJ. Impact of commuting time on the health of migrant workers[J]. J Hebei Norm Univ Sci Tech (Soc Sci Ed), 2021, 20(3): 12-21. DOI: 10.3969/j.issn.1672-7991.2021.03.003. [6] Pega F, Nafradi B, Momen NC, et al. Global, Regional, and National burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 194 countries, 2000-2016: a systematic analysis from the WHO/ILO joint estimates of the work-related burden of disease and injury[J]. Environ Int, 2021, 154: 106595. DOI: 10.1016/j.envint.2021.106595. [7] Zeng Y, Chen YC, Lum T. Longitudinal impacts of grandparent caregiving on cognitive, mental, and physical health in China[J]. Aging Ment Health, 2021, 25(11): 2053-2060. DOI: 10.1080/13607863.2020.1856779. [8] 石伯欣. 品管圈活动在ICU护理交班时间及漏项情况中的应用[J]. 护理实践与研究, 2016, 13(1): 98-100. DOI: 10.3969/j.issn.1672-9676.2016.01.044.Shi BX. Application of quality control circle activities in ICU nursing shift handover time and missing items[J]. Nurs Prac Res, 2016, 13(1): 98-100. DOI: 10.3969/j.issn.1672-9676.2016.01.044. [9] 徐双燕, 周海燕, 王惠琴, 等. 基于SBAR沟通程序的交接班模式在外科护理交接班中的应用[J]. 护理与康复, 2015, 14(7): 675-678. DOI: 10.3969/j.issn.1671-9875.2015.07.026.Xu SY, Zhou HY, Wang HQ, et al. Application of shift handover mode based on SBAR communication procedure in surgical nursing shift handover[J]. Nurs Rehab, 2015, 14(7): 675-678. DOI: 10.3969/j.issn.1671-9875.2015.07.026. [10] 李春容. 运用统筹的APM排班法提高小儿内科护理工作满意度[J]. 医学信息(上旬刊), 2010, 23(10): 3636. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX201010109.htmLi CR. Using the overall APM scheduling method to improve the satisfaction of pediatric internal medicine nursing[J]. Med Inform, 2010, 23(10): 3636. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX201010109.htm [11] 李莉楠, 徐伟. 医院中心导管室护士排班的实践探讨[J]. 中国医院管理, 2013, 33(12): 103-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGL201312058.htmLi LN, Xu W. Discussion on the practice of nurse scheduling in the central catheter room of the hospital[J]. Chin Hosp Manag, 2013, 33(12): 103-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGL201312058.htm [12] Shan Z, Li Y, Zong G, et al. Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: results from two large US cohorts of female nurses[J]. BMJ, 2018, 363: k4641. DOI: 10.1136/bmj.k4641. [13] Ok G, Ahn J, Lee W. Association between irregular menstrual cycles and occupational characteristics among female workers in Korea[J]. Maturitas, 2019, 129: 62-67. DOI: 10.1016/j.maturitas.2019.07.019. [14] Lin TS, Wu CC, Wu JD, et al. Oxidative DNA damage estimated by urinary 8-hydroxy-2'-deoxyguanosine and arsenic in glass production workers[J]. Toxicol Ind Health, 2012, 28(6): 513-521. DOI: 10.1177/0748233711416945. [15] Zelzer S, Tatzber F, Herrmann M, et al. Work intensity, low-grade inflammation, and oxidative status: A comparison between office and slaughterhouse workers[J]. Oxid Med Cell Longev, 2018, 2018: 2737563. DOI: 10.1155/2018/2737563. [16] Lu J, Wang Z, Cao J, et al. A novel and compact review on the role of oxidative stress in female reproduction[J]. Reprod Biol Endocrinol, 2018, 16(1): 80. DOI: 10.1186/s12958-018-0391-5. [17] Nishikitani M, Nakao M, Tsurugano S, et al. Relationship between menstruation status and work conditions in Japan[J]. Biopsychosoc Med, 2017, 11: 26. DOI: 10.1186/s13030-017-0112-x. [18] 吕晓娟, 余淑苑, 石同幸, 等. 广州和深圳居民冬季活动模式调查[J]. 环境与健康杂志, 2015, 32(9): 805-808. DOI: 10.16241/j.cnki.1001-5914.2015.09.014.Lyu XJ, Yu SY, Shi TX, et al. Investigation on winter activity patterns of residents in Guangzhou and Shenzhen[J]. J Env Health, 2015, 32(9): 805-808. DOI: 10.16241/j.cnki.1001-5914.2015.09.014. [19] 孟斌, 郑丽敏, 于慧丽. 北京城市居民通勤时间变化及影响因素[J]. 地理科学进展, 2011, 30(10): 1218-1224. DOI: 10.11820/dlkxjz.2011.10.003.Meng B, Zheng LM, Yu HL. Changes and influencing factors of commuting time of urban residents in Beijing[J]. Prog Geo Sci, 2011, 30(10): 1218-1224. DOI: 10.11820/dlkxjz.2011.10.003. [20] 曹晨, 甄峰, 汪侠, 等. 基于结构方程模型的南京市就业者通勤行为特征对健康的影响研究[J]. 地理科学进展, 2020, 39(12): 2043-2053. DOI: 10.18306/dlkxjz.2020.12.007.Cao C, Zhen F, Wang X, et al. Study on the impact of commuting behavior characteristics on health of employees in Nanjing based on structural equation model[J]. Prog Geo Sci, 2020, 39(12): 2043-2053. DOI: 10.18306/dlkxjz.2020.12.007. [21] 刘志林, 王茂军. 北京市职住空间错位对居民通勤行为的影响分析——基于就业可达性与通勤时间的讨论[J]. 地理学报, 2011, 66(4): 457-467. DOI: 10.11821/xb201104003.Liu ZL, Wang MJ. Analysis on the impact of spatial dislocation of employment and housing on Residents' commuting behavior in Beijing —— a discussion based on employment accessibility and commuting time[J]. J Geo, 2011, 66(4): 457-467. DOI: 10.11821/xb201104003. [22] 姜军, 段进, 陈沧杰, 等. 通勤距离、通勤时间及其与职住平衡的关系研究[J]. 现代城市研究, 2015, (7): 119-123. DOI: 10.3969/j.issn.1009-6000.2015.07.020.Jiang J, Duan J, Chen CJ, et al. Research on commuting distance, commuting time and their relationship with job living balance[J]. Mod Urban Res, 2015, (7): 119-123 DOI: 10.3969/j.issn.1009-6000.2015.07.020. [23] 熊丽芳, 甄峰, 钱前, 等. 基于CHAID决策树方法的城市居民通勤时间影响因素分析——以南京为例[J]. 人文地理, 2013, 28(6): 68-73. DOI: 10.13959/j.issn.1003-2398.2013.06.002.Xiong LF, Zhen F, Qian Q, et al. Analysis of influencing factors of commuting time of urban residents based on CHAID decision tree method — a case study of Nanjing[J]. Hum Geo, 2013, 28(6): 68-73. DOI: 10.13959/j.issn.1003-2398.2013.06.002. [24] 孙斌栋, 吴江洁, 尹春, 等. 通勤时耗对居民健康的影响——来自中国家庭追踪调查的证据[J]. 城市发展研究, 2019, 26(3): 59-64. DOI: 10.3969/j.issn.1006-3862.2019.03.008.Sun BD, Wu JJ, Yin C, et al. The impact of commuting time consumption on residents' health—evidence from the follow-up survey of Chinese families[J]. Urban Dev Res, 2019, 26(3): 59-64. DOI: 10.3969/j.issn.1006-3862.2019.03.008. [25] Huhmann K. Menses requires energy: a review of how disordered eating, excessive exercise, and high stress lead to menstrual irregularities[J]. Clin Ther, 2020, 42(3): 401-407. DOI: 10.1016/j.clinthera.2020.01.016. [26] 吴江洁, 孙斌栋. 发达国家通勤影响个人健康的研究综述与展望[J]. 世界地理研究, 2016, 25(3): 142-150. DOI: 10.3969/j.issn.1004-9479.2016.03.016.Wu JJ, Sun BD. Review and prospect of research on the impact of commuting on personal health in developed countries[J]. World Geo Res, 2016, 25(3): 142-150. DOI: 10.3969/j.issn.1004-9479.2016.03.016. [27] Wener RE, Evans GW, Donald P, et al. Running for the 7: 45: The effects of public transit improvements on commuter stress[J]. Transportation, 2003, 30(2): 203-220. DOI: 10.1023/a:1022516221808. [28] Guner U. Is there a relationship between working hours and hypertension? Evidence from the United States[J]. Work, 2019, 62(2): 279-285. DOI: 10.3233/WOR-192862. [29] Jang SM, Ha EH, Park H, et al. Relationship between work hours and smoking behaviors in Korean male wage workers[J]. Ann Occup Environ Med, 2013, 25(1): 35. DOI: 10.1186/2052-4374-25-35. -