• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MOVICS集成聚类的低级别胶质瘤多组学数据整合分子分型

赵鑫 魏亿芳 李灵梅 师国京 房瑞玲 曹红艳

赵鑫, 魏亿芳, 李灵梅, 师国京, 房瑞玲, 曹红艳. 基于MOVICS集成聚类的低级别胶质瘤多组学数据整合分子分型[J]. 中华疾病控制杂志, 2023, 27(2): 216-223. doi: 10.16462/j.cnki.zhjbkz.2023.02.015
引用本文: 赵鑫, 魏亿芳, 李灵梅, 师国京, 房瑞玲, 曹红艳. 基于MOVICS集成聚类的低级别胶质瘤多组学数据整合分子分型[J]. 中华疾病控制杂志, 2023, 27(2): 216-223. doi: 10.16462/j.cnki.zhjbkz.2023.02.015
ZHAO Xin, WEI Yi-fang, LI Ling-mei, SHI Guo-jing, FANG Rui-ling, CAO Hong-yan. Multi-omics data integration molecular subtyping of lower-grade gliomas based on MOVICS clustering ensemble[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(2): 216-223. doi: 10.16462/j.cnki.zhjbkz.2023.02.015
Citation: ZHAO Xin, WEI Yi-fang, LI Ling-mei, SHI Guo-jing, FANG Rui-ling, CAO Hong-yan. Multi-omics data integration molecular subtyping of lower-grade gliomas based on MOVICS clustering ensemble[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(2): 216-223. doi: 10.16462/j.cnki.zhjbkz.2023.02.015

基于MOVICS集成聚类的低级别胶质瘤多组学数据整合分子分型

doi: 10.16462/j.cnki.zhjbkz.2023.02.015
基金项目: 

国家自然科学基金资助项目 71403156

山西省应用基础研究计划项目 201901D111204

山西医科大学校级博士启动基金项目 BS201722

详细信息
    通讯作者:

    曹红艳,E-mail: caohy@sxmu.edu.cn

  • 中图分类号: R181.2; R739.41

Multi-omics data integration molecular subtyping of lower-grade gliomas based on MOVICS clustering ensemble

Funds: 

National Natural Science Foundation of China 71403156

Applied Basic Research Program of Shanxi Province 201901D111204

Shanxi Medical University Doctoral Initiation Fund Project BS201722

More Information
  • 摘要:   目的  探讨癌症分型中的多组学整合与可视化(multi-omics integration and visualization in cancer subtyping, MOVICS)集成聚类方法在低级别胶质瘤(lower-grade gliomas, LGG)多组学数据整合分型中的应用,识别LGG高危患者,筛选出潜在的生物标志物和重要通路。  方法  采用MOVICS方法集成LGG多组学数据的10种整合方法的分型结果,得到LGG的稳健分子分型,进一步采用Cox回归研究不同分型患者的死亡风险;针对不同分型,筛选差异表达的mRNA(DEmRNAs),miRNA(DEmiRNAs)以及差异甲基化基因(differential methylation genes, DMGs),对三者进行联合分析得到重合基因,利用GO和KEGG分析得到重合基因富集通路,进一步分析核心基因的表达水平对生存率的影响,最后对不同分型患者进行通路活性分析。  结果  LGG患者分为三型,其中,分型3患者的死亡风险是分型1的2.794倍;筛选出1 569个DEmRNAs,140个DEmiRNAs以及337个DMGs,119个重合基因富集到有统计学差异的26条GO生物功能项和7条KEGG通路;生存分析表明DNAJB14和MTUS1可能与患者生存结局相关。通路活性分析结果显示Androgen、EGFR、Trail和VEGF通路的活性在不同分型间差异有统计学意义。  结论  MOVICS聚类集成方法能够有效地对LGG患者进行分型,识别预后高风险患者,筛选出潜在生物标志物以及重要通路,为LGG患者个体化治疗策略的制定提供理论依据。
  • 图  1  多组学数据整合分型聚类集成流程图

    Figure  1.  Flow chart of multi-omics data integration subtyping and clustering ensemble

    图  2  不同分型生存曲线

    Figure  2.  Kaplan-Meier survival curves of different subtypes

    图  3  不同分型中差异表达基因热图

    Figure  3.  Heat map of different expressed genes in different subtypes

    图  4  差异基因韦恩图

    Figure  4.  Venn diagrams of differential genes

    图  5  GO和KEGG通路分析图

    注:(a)为GO通路分析图,(b)为KEGG通路分析图。

    Figure  5.  Maps of GO and KEGG pathway analysis

    图  6  DNAJB14和MTUS1在不同分型中的表达量差异以及生存曲线

    注:(a):DNAJB14在不同分型中的表达水平;(b):MTUS1在不同分型中的表达水平;(c):DNAJB14的不同表达量的生存曲线;(d):MTUS1的不同表达量的生存曲线。

    Figure  6.  Survival curves and different expression levels of DNAJB14 and MTUS1 in different subtypes

    图  7  不同分型的通路活性水平箱式图

    Figure  7.  Boxplots of pathway activity for different subtypes

    表  1  低级别胶质瘤患者分型的基本资料[ n(%)]

    Table  1.   Basic information on different subtypes of patients with LGG [n(%)]

    项目 分型1(n=17) 分型2(n=42) 分型3(n=27)
    生存时间(x±s,月) 95.953±57.614 89.157± 54.660 61.244± 55.719
    年龄(岁)
      <40 12(70.588) 25(59.048) 15(55.556)
      ≥40 5(29.412) 17(40.405) 12(44.444)
    性别
      女性 8(47.059) 20(47.619) 12(44.444)
      男性 9(52.941) 22(52.381) 15(55.556)
    肿瘤分级
      Ⅱ级 9(52.941) 31(73.810) 12(44.444)
      Ⅲ级 8(47.059) 11(26.190) 15(55.556)
    生存状态
      存活 11(64.706) 22(52.381) 11(40.741)
      死亡 6(35.294) 20(47.619) 16(59.259)
    下载: 导出CSV

    表  2  86例低级别胶质瘤患者多变量Cox回归分析结果

    Table  2.   Results of multivariate Cox regression analysis of 86 patients with LGG

    变量 分类 b(S.E)值 Z P值 HR(95% CI)值
    分型 分型1 0.000 1.000
    分型2 0.744(0.495) 1.503 0.133 2.104(0.797~5.551)
    分型3 a 1.028(0.489) 2.102 0.036 2.794(1.072~7.285)
    年龄(岁) 定量资料 0.167(0.329) 0.509 0.611 1.182(0.621~2.250)
    性别 0.000 1.000
    0.270(0.324) 0.835 0.404 1.311(0.695~2.473)
    肿瘤分级 a 等级资料
    Ⅱ级 0.000 1.000
    Ⅲ级 1.557(0.346) 4.500 <0.001 4.746(2.409~9.351)
    注:a P<0.05,差异有统计学意义。
    下载: 导出CSV
  • [1] Shen F, Wu CX, Yao Y, et al. Transition over 35 years in the incidence rates of primary central nervous system tumors in Shanghai, China and histological subtyping based on a single center experience spanning 60 years[J]. Asian Pac J Cancer Prev, 2013, 14(12): 7385-7393. DOI: 10.7314/apjcp.2013.14.12.7385.
    [2] Xue S, Hu M, Iyer V, et al. Blocking the PD-1/PD-L1 pathway in glioma: A potential new treatment strategy[J]. J Hematol Oncol, 2017, 10(1): 81. DOI: 10.1186/s13045-017-0455-6.
    [3] Zhang HB, Li XS, Li YT, et al. An Immune-related signature for predicting the prognosis of lower-grade gliomas[J]. Front Immunol, 2020, 11: 603341. DOI: 10.3389/fimmu.2020.603341.
    [4] Xia MY, Chen HY, Chen T, et al. Transcriptional networks identify BRPF1 as a potential drug target based on inflammatory signature in primary lower-grade gliomas[J]. Front Oncol, 2021, 11: 766656. DOI: 10.3389/fonc.2021.766656.
    [5] Giordano TJ. The cancer genome atlas research network: a sight to behold[J]. Endocr Pathol, 2014, 25(4): 362-365. DOI: 10.1007/s12022-014-9345-4.
    [6] 沈思鹏, 张汝阳, 魏永越, 等. 多组学数据整合分析的统计方法研究进展[J]. 中华疾病控制杂志, 2018, 22(8): 763-765, 771. DOI: 10.16462/j.cnki.zhjbkz.2018.08.001.

    Shen SP, Zhang RY, Wei YY, et al. Research progress on multi-omics integrative analysis methods[J]. Chin J Dis Control Prev, 2018, 22(8): 763-765, 771. DOI: 10.16462/j.cnki.zhjbkz.2018.08.001.
    [7] Zhao Z, Zhang KN, Wang Q, et al. Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data from Chinese Glioma Patients[J]. Genom Proteom Bioinf, 2021, 19(1): 1-12. DOI: 10.1016/j.gpb.2020.10.005.
    [8] Rappoport N, Shamir R. Multi-omic and multi-view clustering algorithms: Review and cancer benchmark[J]. Nucleic Acids Res, 2018, 46(20): 10546-10562. DOI: 10.1093/nar/gky899.
    [9] Alqurashi T, Wang WJ. Clustering ensemble method[J]. Springer Verlag, 2019, 10(6): 1227-1246. DOI: 10.1007/s13042-017-0756-7.
    [10] Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer[J]. Nat Med, 2015, 21(11): 1350-1356. DOI: 10.1038/nm.3967.
    [11] Strehl A, Ghosh J. Cluster ensembles---a knowledge reuse framework for combining multiple partitions[J]. J Mach Learn Res, 2002, 3: 583-617. DOI: 10.1162/153244303321897735.
    [12] He S, Song XY, Yang XX, et al. COMSUC: A web server for the identification of consensus molecular subtypes of cancer based on multiple methods and multi-omics data[J]. PLoS Comput Biol, 2021, 17(3): e1008769. DOI: 10.1038/s41587-019-0055-9.
    [13] Lu XF, Meng JL, Zhou YJ, et al. MOVICS: An R package for multi-omics integration and visualization in cancer subtyping[J]. Bioinformatics, 2020, 36(22-23): 5539-5541. DOI: 10.1093/bioinformatics/btaa1018.
    [14] Ramazzotti D, Lal A, Wang B, et al. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival[J]. Nat Commun, 2018, 9(1): 4453. DOI: 10.1038/s41467-018-06921-8.
    [15] Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments[J]. Stat Appl Genet Mol Biol, 2004, 3(1): 177-187. DOI: 10.2202/1544-6115.1027.
    [16] Ma JB, Li R, Wang J. Characterization of a prognostic four-gene methylation signature associated with radiotherapy for head and neck squamous cell carcinoma[J]. Mol Med Rep, 2019, 20(1): 622-632. DOI: 10.3892/mmr.2019.10294.
    [17] Dweep H, Gretz N, Sticht C. MiRWalk database for miRNA-target interactions[J]. Methods Mol Biol, 2014, 1182: 289-305. DOI: 10.1007/978-1-4939-1062-5_25.
    [18] Xie C, Mao XZ, Huang JJ, et al. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39(SUPPL. 2): W316-W322. DOI: 10.1093/nar/gkr483.
    [19] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: Tool for the unification of biology[J]. Nat Genet, 2000, 25(1): 25-29. DOI: 10.1038/75556.
    [20] Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Res, 2012, 40(D1): D109-D114. DOI: 10.1093/nar/gkr988.
    [21] Schubert M, Klinger B, Klünemann M, et al. Perturbation-response genes reveal signaling footprints in cancer gene expression[J]. Nat Commun, 2018, 9(1): 1-11. DOI: 10.1038/s41467-017-02391-6.
    [22] Markouli M, Strepkos D, Papavassiliou AG, et al. Targeting of endoplasmic reticulum (ER) stress in gliomas[J]. Pharmacol Res, 2020, 157: 104823. DOI: 10.1016/j.phrs.2020.104823.
    [23] Sopha P, Kadokura H, Yamamoto Y, et al. A novel mammalian ER-located J-protein, DNAJB14, can accelerate ERAD of misfolded membrane proteins[J]. Cell Struct Funct, 2012, 37(2): 177-187. DOI: 10.1247/csf.12017.
    [24] Bozgeyik I, Yumrutas O, Bozgeyik E. MTUS1, a gene encoding angiotensin-Ⅱ type 2 (AT2) receptor-interacting proteins, in health and disease, with special emphasis on its role in carcinogenesis[J]. Gene, 2017, 626: 54-63. DOI: 10.1016/j.gene.2017.05.019.
    [25] Ranjan N, Pandey V, Panigrahi MK, et al. The tumor suppressor mtus1/atip1 modulates tumor promotion in glioma: Association with epigenetics and dna repair[J]. Cancers, 2021, 13(6): 1-21. DOI: 10.3390/cancers13061245.
    [26] Fu R, Ding Y, Luo J, et al. Ten-eleven translocation 1 regulates methylation of autophagy-related genes in human glioma[J]. Neuroreport, 2018, 29(9): 731-738. DOI: 10.1097/WNR.0000000000001024.
    [27] Hu C, Fang D, Xu HJ, et al. The androgen receptor expression and association with patient's survival in different cancers[J]. Genomics, 2020, 112(2): 1926-1940. DOI: 10.1016/j.ygeno.2019.11.005.
    [28] 张智峰. TRAIL及其在脑胶质瘤中的研究应用进展[J]. 国外医学: 神经病学神经外科学分册, 2002, 29(4): 363-366. DOI: 10.16636/j.cnki.jinn.2002.04.027.

    Zhang ZF. Progress in TRAIL and its application in glioma[J]. Foreign Med Sci: Psychiatry, 2002, 29(4): 363-366. DOI: 10.16636/j.cnki.jinn.2002.04.027.
    [29] Pollack IF, Erff M, Ashkenazi A. Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells[J]. Clin Cancer Res, 2001, 7(5): 1362-1369.
    [30] 邓钢, 陈谦学. 恶性胶质瘤中的EGFR-STAT3信号通路[J]. 中国神经肿瘤杂志, 2012, 10(3): 205-208.

    Deng G, Chen QX. EGFR-STAT3 signal pathway in malignant glioma[J]. Chin J Neuro-Oncol, 2012, 10(3): 205-208.
    [31] Wang H, Wang X, Xu L, et al. Analysis of the EGFR Amplification and CDKN2A Deletion Regulated Transcriptomic Signatures Reveals the Prognostic Significance of SPATS2L in Patients with Glioma[J]. Front Oncol, 2021, 11: 713. DOI: 10.3389/fonc.2021.551160.
    [32] 张学新, 苏君, 常亮, 等. VEGF在低级别胶质瘤复发, 恶变过程中的表达及意义[J]. 中国误诊学杂志, 2012, 12(2): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZX201202073.htm

    Zhang XX, Su J, Chang L, et al. Expression and significance of VEGF in low grade glioma relapse and malignant transformation[J]. Chin J Misdiagn, 2012, 12(2): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZX201202073.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  270
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-05
  • 修回日期:  2022-07-03
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回