• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长沙市不同等级气温与人腺病毒感染效应分析

罗飘异 匡文韬 倪涵 符刘懿 吕媛 查文婷 易尚辉 张斯钰

罗飘异, 匡文韬, 倪涵, 符刘懿, 吕媛, 查文婷, 易尚辉, 张斯钰. 长沙市不同等级气温与人腺病毒感染效应分析[J]. 中华疾病控制杂志, 2024, 28(2): 152-160. doi: 10.16462/j.cnki.zhjbkz.2024.02.005
引用本文: 罗飘异, 匡文韬, 倪涵, 符刘懿, 吕媛, 查文婷, 易尚辉, 张斯钰. 长沙市不同等级气温与人腺病毒感染效应分析[J]. 中华疾病控制杂志, 2024, 28(2): 152-160. doi: 10.16462/j.cnki.zhjbkz.2024.02.005
LUO Piaoyi, KUANG Wentao, NI Han, FU Liuyi, LYU Yuan, ZHA Wenting, YI Shanghui, ZHANG Siyu. Analysis of the effects of different temperature levels in Changsha on human adenovirus infection[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(2): 152-160. doi: 10.16462/j.cnki.zhjbkz.2024.02.005
Citation: LUO Piaoyi, KUANG Wentao, NI Han, FU Liuyi, LYU Yuan, ZHA Wenting, YI Shanghui, ZHANG Siyu. Analysis of the effects of different temperature levels in Changsha on human adenovirus infection[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(2): 152-160. doi: 10.16462/j.cnki.zhjbkz.2024.02.005

长沙市不同等级气温与人腺病毒感染效应分析

doi: 10.16462/j.cnki.zhjbkz.2024.02.005
基金项目: 

湖南省科技创新重大项目 2020SK1010

湖南省自然科学基金 2020JJ8007

湖南省教育厅重点项目 21A0023

长沙市自然科学基金 kq2202254

详细信息
    通讯作者:

    易尚辉,E-mail:653489246@qq.com

    张斯钰,E-mail:359766279@qq.com

  • 中图分类号: R725.1

Analysis of the effects of different temperature levels in Changsha on human adenovirus infection

Funds: 

Major Project of Science and Technology Innovation of Hunan Province 2020SK1010

Natural Science Foundation of Hunan Province 2020JJ8007

Key Projects of Hunan Provincial Department of Education 21A0023

Changsha Natural Science Foundation kq2202254

More Information
  • 摘要:   目的  探讨不同等级气温对人腺病毒(human adenoviruses, HAdV)感染情况的影响及其滞后效应。  方法  收集长沙市3家哨点医院2020年HAdV感染资料和同期气象资料,采用Spearman秩相关分析气象因素与HAdV感染病例数的相关性;将不同等级气温(日平均、日最高、日最低气温)<P2.5和>P97.5作为划定极低温和极高温的阈值,利用分布滞后非线性模型(distributed lag nonlinear model, DLNM)探讨不同等级气温对HAdV感染情况的影响和滞后效应。  结果  2020年,在长沙市41 624份标本中开展HAdV检测,检出阳性1 693份,检出率为4.07%,其中0~<5岁婴幼儿占67.04%。Spearman秩相关分析结果显示,HAdV感染与日平均气温(rs=-0.121)、日最高气温(rs=-0.110)和日最低气温(rs=-0.119)存在弱相关(均P < 0.05)。在DLNM中,三维图和等高线图均显示,HAdV感染风险存在高温短期效应。极高温条件下,日平均和日最低气温对HAdV感染风险产生单日滞后效应;日平均与日最高气温的累积效应随滞后天数的增加逐渐上升,滞后21 d时,其相对风险分别上升至15.79(95% CI: 2.69~92.79)、11.81(95%CI: 2.26~61.68);在滞后4 d时,日最低气温的累积效应最高(RR=6.78, 95% CI: 1.05~43.83)。  结论  婴幼儿是HAdV的易感人群,不同等级气温与HAdV感染情况存在相关性,且极高温条件可显著提高长沙市HAdV感染风险的单日和累积滞后效应。
  • 图  1  2020年长沙市不同等级气温与人腺病毒感染的效应分布三维图

    A: 日平均气温;B: 日最高气温;C: 日最低气温。

    Figure  1.  Three-dimensional plot of the distribution of effects of different temperature levels and human adenoviruses infection in Changsha in 2020

    A: daily average temperature; B: daily maximum temperature; C: daily minimum temperature.

    图  2  2020年长沙市不同等级气温对人腺病毒感染的效应分布等高线图

    A: 日平均气温;B: 日最高气温;C: 日最低气温。

    Figure  2.  Contour plot of the distribution of effects of different temperature levels and human adenoviruses infection in Changsha in 2020

    A: daily average temperature; B: daily maximum temperature; C: daily minimum temperature.

    图  3  2020年长沙市不同等级气温下极端气温对人腺病毒感染风险的单日效应RR值(95% CI)

    a: P < 0.05。

    Figure  3.  Single-day effects of extreme temperature on the risk of human adenoviruses infection under different temperature levels in Changsha in 2020, RR value (95% CI)

    a: P < 0.05.

    图  4  2020年长沙市不同等级气温下极端气温对人腺病毒感染风险的累积效应RR值(95% CI)

    a: P < 0.05。

    Figure  4.  Cumulative effects of extreme temperature on the risk of human adenoviruses infection under different temperature levels in Changsha in 2020, RR value (95% CI)

    a: P < 0.05.

    表  1  2020年长沙市流行性感冒样病例检测人次数与人腺病毒感染情况

    Table  1.   Number of influenza-like cases tested and cases of human adenoviruses infection in Changsha in 2020

    变量  Variables 检测人次数
    Number of test persons
    感染病例数
    Number of infection cases
    最小值
    Min
    最大值
    Max
    感染占比/%
    Proportion of infections/%
    阳性率/%
    Positive rate/%
    性别  Gender
        男  Male 24 051 979 1 17 57.83 4.07
        女  Female 17 573 714 1 14 42.17 4.06
    年龄组/岁  Age group/years
        0~ < 5 27 095 1 135 1 16 67.04 4.19
        5~ < 25 8 549 371 1 9 21.91 4.40
        25~ < 60 3 655 130 1 7 7.68 3.56
        ≥60 2 325 57 1 2 3.37 2.45
    季节  Season
        春  Spring 8 002 302 1 9 17.84 3.77
        夏  Summer 9 029 332 1 9 19.61 3.68
        秋  Autumn 8 905 316 1 8 18.66 3.55
        冬  Winter 15 688 743 1 26 43.89 4.74
    合计  Total 41 624 1 693 1 26 100.00 4.06
    下载: 导出CSV

    表  2  2020年长沙市气象因素情况

    Table  2.   Meteorological factors in Changsha in 2020

    变量  Variables 均数±标准差(x±s) 最小值
    Min
    P2.5 P50 P97.5 最大值
    Max
    日平均气温/℃  Daily average temperature/℃ 17.42±8.58 0.20 3.20 17.90 30.70 31.30
    日最高气温/℃  Daily maximum temperature/℃ 21.54±9.47 2.60 4.95 22.90 35.28 37.00
    日最低气温/℃  Daily minimum temperature/℃ 14.48±8.21 -3.80 0.08 14.50 26.85 28.20
    相对湿度/%  Relative humidity/% 79.07±13.81 43.00 51.18 82.00 98.82 100.00
    平均气压/hPa  Average air pressure/hPa 1 001.60±8.99 985.80 987.60 1 001.95 1 017.90 1 023.80
    平均风速/(m·s-1)  Average wind speed/ (m·s-1) 2.45±1.38 0.00 0.40 2.25 5.80 9.20
    日照时数/h  Sunshine hours/h 3.60±4.25 0.00 0.00 0.90 12.00 12.60
    降水量/mm  Precipitation/mm 4.03±9.55 0.00 0.00 0.00 39.10 55.60
    下载: 导出CSV

    表  3  2020年长沙市人腺病毒感染与气象因素间Spearman分析

    Table  3.   Spearman analysis of human adenoviruses infection and meteorological factors in Changsha in 2020

    变量  Variables 日平均气温/℃
    Daily average temperature/℃
    日最高气温/℃
    Daily maximum temperature/℃
    日最低气温/℃
    Daily minimum temperature/℃
    相对湿度/%
    Relative humidity/%
    降水量/mm
    Precipitation/mm
    日照时数/h
    Sunshine hours/h
    平均气压/hPa
    Average air pressure/hPa
    平均风速/(m·s-1) Average wind
    speed /(m·s-1)
    病例数/例
    Number of cases/cases
    日平均气温/℃
    Daily average temperature/℃
    1.000
    日最高气温/℃
    Daily maximum temperature/℃
    0.974 1.000
    日最低气温/℃
    Daily minimum temperature/℃
    0.977 0.918 1.000
    相对湿度/%
    Relative humidity/%
    -0.157 0.264 -0.016 1.000
    降水量/mm
    Precipitation/mm
    -0.117 0.189 -0.012 0.711 1.000
    日照时数/h
    Sunshine hours/h
    0.440 0.565 0.291 -0.685 -0.551 1.000
    平均气压/hPa
    Average air pressure/hPa
    -0.900 0.863 -0.905 -0.087 -0.069 -0.274 1.000
    平均风速/(m·s-1)
    Average wind speed/ (m·s-1)
    -0.261 0.283 -0.200 0.085 0.008 -0.244 0.257 1.000
    病例数
    Number of cases
    -0.121 -0.110 -0.119 0.067 0.035 -0.054 0.066 -0.039 1.000
    注:① P < 0.05。
    Note: ① P < 0.05.
    下载: 导出CSV
  • [1] Li JY, Sun RH, Chen LD. Identifying sensitive population associated with summer extreme heat in Beijing [J]. Sustain Cities Soc, 2022, 83: 103925. DOI: 10.1016/j.scs.2022.103925.
    [2] Ding T, Li X, Gao H. An unprecedented high temperature event in Southern China in autumn 2021 and the essential role of the mid-latitude trough [J]. Adv Clim Change Res, 2022, 13(6): 772-777. DOI: 10.1016/j.accre.2022.11.002.
    [3] Ingole V, Sheridan SC, Juvekar S, et al. Mortality risk attributable to high and low ambient temperature in Pune city, India: a time series analysis from 2004 to 2012 [J]. Environ Res, 2022, 204: 112304. DOI: 10.1016/j.envres.2021.112304.
    [4] Li ZJ, Li YL, Wang XN, et al. Extreme temperature exposure and urolithiasis: a time series analysis in Ganzhou, China [J]. Front Public Health, 2022, 10: 1075428. DOI: 10.3389/fpubh.2022.1075428.
    [5] Shao M, Yu L, Xiao C, et al. Short-term effects of ambient temperature and pollutants on the mortality of respiratory diseases: a time-series analysis in Hefei, China [J]. Ecotoxicol Environ Saf, 2021, 215: 112160. DOI: 10.1016/j.ecoenv.2021.112160.
    [6] Liu Y, Guo Y, Wang CB, et al. Association between temperature change and outpatient visits for respiratory tract infections among children in Guangzhou, China [J]. Int J Environ Res Public Health, 2015, 12(1): 439-454. DOI: 10.3390/ijerph120100439.
    [7] 周建丁, 马玉霞, 杨丝絮, 等. 最高气温对呼吸系统疾病急诊人次的影响研究[J]. 中国环境科学, 2019, 39(1): 372-378. DOI: 10.3969/j.issn.1000-6923.2019.01.044.

    Zhou JD, Ma YX, Yang SX, et al. A study on the impact of daily maximum temperature on the hospital emergency room visits due to respiratory diseases [J]. China Environ Sci, 2019, 39(1): 372-378. DOI: 10.3969/j.issn.1000-6923.2019.01.044.
    [8] Ko JH, Woo HT, Oh HS, et al. Ongoing outbreak of human adenovirus-associated acute respiratory illness in the Republic of Korea military, 2013 to 2018 [J]. Korean J Intern Med, 2021, 36(1): 205-213. DOI: 10.3904/kjim.2019.092.
    [9] 饶华祥, 马永成, 姜双应, 等. 青海省急性呼吸道感染病原学分析[J]. 中国病原生物学杂志, 2014, 9(5): 430-433. DOI: 10.13350/j.cjpb.140511.

    Rao HX, Ma YC, Jiang SY, et al. Etiological analysis of acute respiratory tract infection in Qinghai Province [J]. J Pathog Biol, 2014, 9(5): 430-433. DOI: 10.13350/j.cjpb.140511.
    [10] 路凤, 李亚伟, 李成橙, 等. 时间序列分析在空气污染与健康领域的应用及其R软件实现[J]. 中国卫生统计, 2018, 35(4): 622-625. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201804041.htm

    Lu F, Li YW, Li CC, et al. Application of time series analysis in the field of air pollution and health and its R software implementation [J]. China Health Statistics, 2018, 35(4): 622-625. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201804041.htm
    [11] Zhang C, Fu X, Zhang YY, et al. Epidemiological and time series analysis of haemorrhagic fever with renal syndrome from 2004 to 2017 in Shandong Province, China [J]. Sci Rep, 2019, 9: 14644. DOI: 10.1038/s41598-019-50878-7.
    [12] Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models [J]. Stat Med, 2010, 29(21): 2224-2234. DOI: 10.1002/sim.3940.
    [13] Zhu HS, Chen S, Wang MZ, et al. Analysis on association between incidence of hand foot and mouth disease and meteorological factors in Xiamen, 2013-2017 [J]. Chin J Epidemiol, 2019, 40(5): 531-536. DOI: 10.3760/cma.j.issn.0254-6450.2019.05.008.
    [14] 中国疾病预防控制中心. 人腺病毒呼吸道感染预防控制技术指南(2019年版)(2019-12-13)[2023-02-01]. https://www.chinapneumonia.cn/uploadfile/images/edit/0830171753614.pdf.
    [15] 沈秀莲, 郑尔达, 黄甜, 等. 基于分布滞后非线性模型探讨日均气温对曲靖市手足口病发病的影响[J]. 中华疾病控制杂志, 2020, 24(11): 1275-1281. DOI: 10.16462/j.cnki.zhjbkz.2020.11.007.

    Shen XL, Zheng ED, Huang T, et al. Effect of temperature on hand, foot and mouth disease incidence in Qujing: a distributed lag non-linear model analysis [J]. Chin J Dis Control Prev, 2020, 24(11): 1275-1281. DOI: 10.16462/j.cnki.zhjbkz.2020.11.007.
    [16] Barnadas C, Schmidt DJ, Fischer TK, et al. Molecular epidemiology of human adenovirus infections in Denmark, 2011-2016 [J]. J Clin Virol, 2018, 104: 16-22. DOI: 10.1016/j.jcv.2018.04.012.
    [17] Kurskaya O, Ryabichenko T, Leonova N, et al. Viral etiology of acute respiratory infections in hospitalized children in Novosibirsk City, Russia (2013-2017) [J]. PLoS One, 2018, 13(9): e0200117. DOI: 10.1371/journal.pone.0200117.
    [18] 吴本权, 唐英春, 朱家馨, 等. 广州市区两幼儿园2~6岁健康儿童肺炎链球菌携带状况调查[J]. 中国当代儿科杂志, 2001(5): 529-531. DOI: 10.3969/j.issn.1008-8830.2001.05.013.

    Wu BQ, Tang YC, Zhu JX, et al. Carrier rate of Streptococcus pneumoniae in healthy children aged 2-6 in two kindergartens in Guangzhou city [J]. Chin J Contemp Pediatr, 2001, 3(5): 529-531. DOI: 10.3969/j.issn.1008-8830.2001.05.013.
    [19] Mäkinen TM, Juvonen R, Jokelainen J, et al. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections [J]. Respir Med, 2009, 103(3): 456-462. DOI: 10.1016/j.rmed.2008.09.011.
    [20] Pscheidt VM, Gregianini TS, Martins LG, et al. Epidemiology of human adenovirus associated with respiratory infection in southern Brazil [J]. Rev Med Virol, 2021, 31(4): e2189. DOI: 10.1002/rmv.2189.
    [21] 骆善彩, 汪庆庆, 杨娟, 等. 基于分布滞后非线性模型评估气温对淮安市儿科呼吸系统疾病门诊量的影响[J]. 江苏预防医学, 2022, 33(1): 3-7. DOI: 10.13668/j.issn.1006-9070.2022.01.002.

    Luo SC, Wang QQ, Yang J, et al. A study of the average daily temperature and children′s hospital respiratory disease outpatient volume based on distributed lag no-linear model in Huai′an City [J]. Jiangsu J Prev Med, 2022, 33(1): 3-7. DOI: 10.13668/j.issn.1006-9070.2022.01.002.
    [22] 李娟, 张志薇, 于庚康, 等. 气象要素对南京市呼吸系统疾病的影响研究[J]. 气象科学, 2017, 37(3): 409-415. DOI: 10.3969/2016jms.0050.

    Li J, Zhang ZW, Yu GK, et al. Impact of meteorological factors on respiratory diseases in Nanjing [J]. J Meteorol Sci, 2017, 37(3): 409-415. DOI: 10.3969/2016jms.0050.
    [23] 马辛悦. 2005-2018年沈阳市区居民呼吸系统疾病死亡趋势及极端温度对死亡风险的时空规律分析[D]. 沈阳: 中国医科大学, 2022.

    Ma XY. Analysis on the death trend of respiratory diseases and the temporal and spatial law of extreme temperature on death risk in Shenyang urban residents from 2005 to 2018 [D]. Shenyang: China Medical University, 2022.
    [24] Lei C, Lou CT, Io K, et al. Viral etiology among children hospitalized for acute respiratory tract infections and its association with meteorological factors and air pollutants: a time-series study (2014-2017) in Macao [J]. BMC Infect Dis, 2022, 22(1): 588. DOI: 10.1186/s12879-022-07585-y.
    [25] Liu WQ, Liu WL, Zhuang GY, et al. The change in the relationship between temperature and respiratory diseases among children in Guangzhou, China [J]. Environ Sci Pollut Res, 2023, 30(19): 55816-55825. DOI: 10.1007/s11356-023-26374-x.
    [26] Ban J, Xu D, He MZ, et al. The effect of high temperature on cause-specific mortality: a multi-County analysis in China [J]. Environ Int, 2017, 106: 19-26. DOI: 10.1016/j.envint.2017.05.019.
    [27] Dastoorpoor M, Khodadadi N, Masoumi K, et al. Physiological equivalent temperature (PET) and non-accidental, cardiovascular and respiratory disease mortality in Ahvaz, Iran [J]. Environ Geochem Health, 2022, 44(8): 2767-2782. DOI: 10.1007/s10653-021-01063-1.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-09-03
  • 网络出版日期:  2024-03-30
  • 刊出日期:  2024-02-10

目录

    /

    返回文章
    返回